This document is created with the unregistered version of CHM2PDF Pilot

IN A NUTSHELL

1 Dimiioge (v Aoy

ORELLY" s

Table of Contents
Index
Reviews
Examples
Reader Reviews
Errata

Python in a Nutshell

By Alex Matdli

Publisher : ORelly

Pub Date : March 2003
ISBN : 0-596-00188-6
Pages 164

Inthetradition of ORellly's"In aNutshell" series, Python in aNutshell offers Python programmers one place to ook
when they need help remembering or deciphering the syntax of this open source language and its many modules. This
comprehensive reference guide makesit easy to look up dl the most frequently needed information--not just about
the Python language itsdlf, but also the most frequently used parts of the standard library and the most important
third-party extensions.

[TeamLiB]

http://www.oreilly.com/catalog/pythonian/reviews.html
http://examples.oreilly.com/pythonian
http://www.oreilly.com/cgi-bin/reviews@bookident=pythonian
http://www.oreilly.com/catalog/pythonian/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/918@x-t=book.view

This document is created with the unregistered version of CHM2PDF Pilot

IN A NUTSHELL

T Ny e —

CrRELLY"

Table of Contents
Index
Reviews
Examples
Reader Reviews
Errata

Python in a Nutshell

By Alex Matdli

Publisher : ORelly

Pub Date : March 2003
ISBN : 0-596-00188-6
Pages 164

Copyright

Preface
How This Book |s Organized
Conventions Used in This Book
How to Contact Us
Acknowledgments

Part|: Getting Started with Python
Chapter 1. Introduction to Python
Section 1.1. The Python Language
Section 1.2. The Python Standard Library and Extension Modules
Section 1.3. Python Implementations
Section 1.4. Python Development and Versions
Section 1.5. Python Resources

Chapter 2. Ingdlation
Section 2.1. Ingtdling Python from Source Code
Section 2.2. Ingaling Python from Binaries
Section 2.3. Ingdling Jython

Chapter 3. The Python Interpreter
Section 3.1. The python Program
Section 3.2. Python Devel opment Environments
Section 3.3. Running Python Programs
Section 3.4. The Jython Interpreter

http://www.oreilly.com/catalog/pythonian/reviews.html
http://examples.oreilly.com/pythonian
http://www.oreilly.com/cgi-bin/reviews@bookident=pythonian
http://www.oreilly.com/catalog/pythonian/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/918@x-t=book.view

This document is created with the unregistered version of CHM2PDF Pilot

Part I1: Core Python Language and Built-ins

Chapter 4. The Python Language
Section 4.1. Lexica Structure
Section 4.2. Data Types
Section 4.3. Variables and Other References
Section 4.4. Expressions and Operators
Section 4.5. Numeric Operations
Section 4.6. Sequence Operations
Section 4.7. Dictionary Operations
Section 4.8. The print Statement
Section 4.9. Control Flow Statements
Section 4.10. Functions

Chapter 5. Object-Oriented Python
Section 5.1. Classic Classes and Instances
Section 5.2. New-Style Classes and Instances
Section 5.3. Specid Methods
Section 5.4. Metaclasses

Chapter 6. Exceptions
Section 6.1. Thetry Statement
Section 6.2. Exception Propagation
Section 6.3. Theraise Statement
Section 6.4. Exception Objects
Section 6.5. Custom Exception Classes
Section 6.6. Error-Checking Strategies

Chapter 7. Modules
Section 7.1. Module Objects
Section 7.2. Module Loading
Section 7.3. Packages
Section 7.4. The Digribution Utilities (distutils)

Chapter 8. Core Built-ins
Section 8.1. Built-in Types
Section 8.2. Built-in Functions
Section 8.3. ThesysModule
Section 8.4. The getopt Module
Section 8.5. The copy Module
Section 8.6. The bisect Module

Section 8.7. TheUserList, UserDict, and UserString Modules

Chapter 9. Strings and Regular Expressions
Section 9.1. Methods of String Objects
Section 9.2. The string Module
Section 9.3. String Formeatting
Section 9.4. The pprint Module
Section 9.5. Therepr Module
Section 9.6. Unicode

Section 9.7. Regular Expressions and the re Module

Part 111: Python Library and Extenson Modules
Chapter 10. File and Text Operations

This document is created with the unregistered version of CHM2PDF Pilot

Section 10.1. TheosModule

Section 10.2. Filesystem Operations

Section 10.3. File Objects

Section 10.4. Auxiliary Modulesfor File I/O
Section 10.5. The Stringl O and cStringlO Modules
Section 10.6. Compressed Files

Section 10.7. Text Input and Output

Section 10.8. Richer-Text 1/0

Section 10.9. Interactive Command Sessions
Section 10.10. Internationalization

Chapter 11. Persistence and Databases
Section 11.1. Seridization
Section 11.2. DBM Modules
Section 11.3. The Berkeley DB Module
Section 11.4. The Python Database APl (DBAPI) 2.0

Chapter 12. Time Operations
Section 12.1. Thetime Module
Section 12.2. The sched Module
Section 12.3. The cdendar Module
Section 12.4. The mx.DateTime Module

Chapter 13. Controlling Execution
Section 13.1. Dynamic Execution and the exec Statement
Section 13.2. Restricted Execution
Section 13.3. Interna Types
Section 13.4. Garbage Collection
Section 13.5. Termination Functions
Section 13.6. Site and User Customization

Chapter 14. Threads and Processes
Section 14.1. Threadsin Python
Section 14.2. Thethread Module
Section 14.3. The Queue Module
Section 14.4. Thethreading Module
Section 14.5. Threaded Program Architecture
Section 14.6. Process Environment
Section 14.7. Running Other Programs
Section 14.8. The mmap Module

Chapter 15. Numeric Processing
Section 15.1. The math and cmath Modules
Section 15.2. The operator Module
Section 15.3. Therandom Module
Section 15.4. Thearray Module
Section 15.5. The Numeric Package
Section 15.6. Array Objects
Section 15.7. Universal Functions (ufuncs)
Section 15.8. Optiona Numeric Modules

Chapter 16. Tkinter GUIs
Section 16.1. Tkinter Fundamentas
Section 16.2. Widget Fundamentals
Section 16.3. Commonly Used Smple Widgets

This document is created with the unregistered version of CHM2PDF Pilot

Section 16.4. Container Widgets
Section 16.5. Menus

Section 16.6. The Text Widget
Section 16.7. The Canvas Widget
Section 16.8. Geometry Management
Section 16.9. Tkinter Events

Chapter 17. Testing, Debugging, and Optimizing
Section 17.1. Testing
Section 17.2. Debugging
Section 17.3. Thewarnings Module
Section 17.4. Optimization

Part IV: Network and Web Programming
Chapter 18. Client-Side Network Protocol Modules

Section 18.1. URL Access
Section 18.2. Email Protocols
Section 18.3. The HTTP and FTP Protocols
Section 18.4. Network News
Section 18.5. Telnet
Section 18.6. Didtributed Computing

Chapter 19. Sockets and Server-Side Network Protocol Modules
Section 19.1. The socket Module
Section 19.2. The SocketServer Module
Section 19.3. Event-Driven Socket Programs

Chapter 20. CGI Scripting and Alternatives
Section 20.1. CGl in Python
Section 20.2. Cookies
Section 20.3. Other Server-Side Approaches

Chapter 21. MIME and Network Encodings
Section 21.1. Encoding Binary Dataas Text
Section 21.2. MIME and Email Format Handling

Chapter 22. Structured Text: HTML
Section 22.1. Thesgmllib Module
Section 22.2. The htmllib Module
Section 22.3. The HTML Parser Module
Section 22.4. Generating HTML

Chapter 23. Structured Text: XML
Section 23.1. An Overview of XML Parsing
Section 23.2. Parsing XML with SAX
Section 23.3. Parsing XML with DOM
Section 23.4. Changing and Generating XML

Pat V. Extending and Embedding
Chapter 24. Extending and Embedding Classic Python
Section 24.1. Extending Python with Python's C AP
Section 24.2. Extending Python Without Python's C AP
Section 24.3. Embedding Python

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 25. Extending and Embedding Jython
Section 25.1. Importing Java Packagesin Jython
Section 25.2. Embedding Jythonin Java
Section 25.3. Compiling Python into Java

Chapter 26. Didributing Extensions and Programs
Section 26.1. Python'sdistutils
Section 26.2. The py2exe Tool
Section 26.3. The Ingaller Tool

Colophon
Index

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Copyright

Copyright 2003 O'Rellly & Associates, Inc.

Printed in the United States of America

Published by O'Rellly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Rellly & Associates books may be purchased for educationd, business, or sales promotional use. Online editions
areaso avallable for most titles (http://ssfari.orellly.com). For more information, contact our corporate/ingtitutiona
sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook |ogo, and the O'Rellly logo are registered trademarks of O'Rellly &
Asociates, Inc. Many of the designations used by manufacturers and sellersto distinguish their products are claimed
astrademarks. Where those designations appear in thisbook, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initid caps. The association between theimage of an
African rock python and the topic of Pythonisatrademark of O'Rellly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
repongbility for errors or omissions, or for damages resulting from the use of the information contained herein.

[TeamLiB]

http://safari.oreilly.com/default.htm
mailto:corporate@oreilly.com

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Preface

The Python programming language manages to reconcile many gpparent contradictions: it's both elegant and
pragmatic, Smple and powerful, ahigh-level language that doesn't get in your way when you want to fiddle with bits
and bytes, suitable for programming novices and great for expertstoo.

Thisbook isamed at programmers with some previous exposure to Python, as well as experienced programmers
coming to Python for thefirgt time from other programming languages. The book isaquick reference to Python itsdlf,
the most important parts of its vast standard library, and some of the most popular and useful third-party modules,
covering arange of applicationsincluding web and network programming, GUIs, XML handling, database
Interactions, and high-speed numeric computing. It focuses on Python's cross-platform capabilities and coversthe
basics of extending Python and embedding it in other gpplications, using either C or Java.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

How This Book Is Organized

Thisbook hasfive parts, asfollows:
Part |, Getting Started with Python

Chapter 1 coversthe generd characteritics of the Python language and itsimplementations, and discusses
whereto get help and information.

Chapter 2 explains how to obtain and ingtall Python.

Chapter 3 coversthe Python interpreter program, its command-line options, and its use for running Python
programs and in interactive sessons. The chapter also mentionstext editorsthat are particularly suitable for
editing Python programs, and examines some full-fledged integrated devel opment environments, including
IDLE, which comes free with standard Python.

Part 11, Core Python Language and Built-ins

Chapter 4 covers Python syntax, built-in datatypes, expressions, statements, and how to write and call
functions.

Chapter 5 explains object-oriented programming in Python.

Chapter 6 covershow to ded with errors and abnormal conditionsin Python programs.

Chapter 7 covers the waysin which Python lets you group code into modules and packages, and how to
define and import modules.

Chapter 8 isareference to built-in data types and functions, and some of the most fundamenta modulesin
the slandard Python library.

Chapter 9 covers Python's powerful string-processing facilities, including regular expressions.

Part 111, Python Library and Extenson Modules

Chapter 10 explains how to ded with files and text processing using built-in Python file objects, modules
from Python's standard library, and platform-specific extensgonsfor rich text /0.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Conventions Used in This Book

Thefollowing conventions are used throughout this book.

Refer ence Conventions

In the function/method reference entries, when feasible, each optiond parameter is shown with adefault vaue using
the Python syntax name=val ue. Built-in functions need not accept named parameters, so parameter names are not
sgnificant. Some optional parameters are best explained in terms of their presence or absence, rather than through
default values. In such cases, aparameter isindicated as being optiona by enclosing it in brackets ([]). When more
than one argument is optional, the brackets are nested.

Typographic Conventions
Italic

Used for filenames, program names, URL s, and to introduce new terms.
Congtant Width

Used for dl code examples, aswell asfor commands and dl itemsthat appear in code, including keywords,
methods, functions, classes, and modules.
Constant Width Italic

Used to show text that can be replaced with user-supplied values in code examples.
Constant Wdth Bold

Used for commands that must be typed on the command line, and occasiondly for emphasisin code examples or to
indicate code outpuit.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find that features have
changed (or even that we have made mistakes!). Please let us know about any errors you find, aswell asyour
suggestionsfor future editions, by writing to:

OReilly & Associates 1005 Gravenstein Highway North Sebastopol, CA 95472 (800) 928-9938 (in the United
States or Canada) (707) 829-0515 (internationa or local) (707) 829-0104 (fax)

Thereisaweb pagefor this book, which lists errata, examples, and any additional information. Y ou can accessthis

page a:
http:/Aww.orellly.com/cata og/pythonian/

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, resource centers, and the O'Rellly Network, see the O'Reilly web
Sted:
http:/Mmww.oreilly.com
[TeamLiB]

http://www.oreilly.com/catalog/pythonian/default.htm
mailto:bookquestions@oreilly.com
http://www.oreilly.com/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Acknowledgments

My heartfelt thanks to everybody who helped me out on this book. Many Python beginners, practitioners, and
experts have read drafts of parts of the book and have given me feedback to help makeit clearer and more precise,
accurate, and readable. Out of those, for the quality and quantity of their feedback, | must single out for special
thanks Andrea Babini, Andrel Raevsky, Anna Ravenscroft, and my fellow Python Business Forum board members
Jacob Hallén and Laura Creighton.

Some Python experts gave me indispensable help in specific areas: Aahz on threading, Itamar Shtull-Trauring on
Twisted, Mike Orr on Cheetah, Eric Jones and Paul Dubois on Numeric, and Tim Peters on threading, testing,
performance issues, and optimization.

| was a so blessed with awonderful group of technical reviewers: Fred Drake of Python Labs, co-author of Python
& XML (O'Rellly) and Grand Poobah of Python's excellent free documentation; Magnus Lie Hetland, author of
Practical Python (Apress); Steve Holden, author of Python Web Programming (New Riders); and last but not least
Sue Giller, whose observations as a sharp-eyed, experienced, non-Pythonista programmer were particularly useful in
the pursuit of clarity and precision. The book's editor, Paula Ferguson, went above and beyond the call of duty in her
work to make this book clearer and more readable.

My family and friends have been patient and supportive throughout the time it took me to write this book: particular
thanksfor that to my children Flaviaand Lucio, my partner Marina, my sster Elisabetta, and my father Lanfranco.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] e

Part |: Getting Started with
Python

Chapter 1
Chapter 2

Chapter 3
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] e
Chapter 1. Introduction to Python

Python is a generad-purpose programming language. It has been around for quite awhile: Guido van Rossum,
Python's creator, started devel oping Python back in 1990. This stable and mature language isvery high leve,
dynamic, object-oriented, and cross-platform—all characteristics that are very attractive to developers. Python runs
on al mgor hardware platforms and operating systems, so it doesn't constrain your platform choices.

Python offers high productivity for al phases of the softwarelife cycle: andys's, design, prototyping, coding, testing,
debugging, tuning, documentation, deployment, and, of course, maintenance. Python's popul arity has seen steedy,
unflagging growth over the years. Today, familiarity with Python is an advantage for every programmer, as Pythoniis
likely to have some useful role to play asapart of any software solution.

Python provides a unique mix of elegance, smplicity, and power. Y ou'll quickly become productive with Python,
thanksto its congstency and regularity, itsrich standard library, and the many other modulesthat are readily available
for it. Pythoniseasy to learn, so it isquite suitable if you are new to programming, yet at the sametimeit is powerful
enough for the most sophisticated expert.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

1.1 The Python Language

The Python language, while not minimai<, israther spare, for good pragmeatic reasons. When alanguage offersone
good way to express adesign idea, supplying other ways has only modest benefits, while the cost in terms of
language complexity grows with the number of features. A complicated language is harder to learn and to master (and
to implement efficiently and without bugs) than asimpler one. Any complications and quirksin alanguage hamper
productivity in software maintenance, particularly in large projects, where many devel opers cooperate and often
maintain code originaly written by others.

Pythonissmple, but not smplistic. It adheresto theideathat if alanguage behaves a certain way in some contexts, it
should idedlly work smilarly in dl contexts. Python a so follows the principle that alanguage should not have
convenient shortcuts, special cases, ad hoc exceptions, overly subtle distinctions, or mysterious and tricky
under-the-covers optimizations. A good language, like any other designed artifact, must balance such genera
principles with taste, common sense, and a high degree of practicality.

Python is a genera-purpose programming language, so Python'straits are useful in any area of software
development. Thereis no areawhere Python cannot be part of an optima solution. "Part” is an important word
here—while many developersfind that Python fillsal of their needs, Python does not have to stand done. Python
programs can cooperate with avariety of other software components, making it an ided language for gluing together
components written in other languages.

Python isavery-high-level language. This meansthat Python usesa higher leve of abstraction, conceptualy farther
from the underlying machine, than do classic compiled languages, such as C, C++, and Fortran, which are
traditionaly called high-level languages. Python isalso smpler, faster to process, and more regular than classic
high-level languages. Thisaffords high programmer productivity and makes Python an attractive devel opment tool.
Good compilersfor classic compiled languages can often generate binary machine code that runs much faster than
Python code. However, in most cases, the performance of Python-coded applications proves sufficient. When it
doesn't, you can gpply the optimization techniques covered in Chapter 17 to enhance your program's performance
while keeping the benefits of high programming productivity.

Python is an object-oriented programming language, but it lets you develop code using both object-oriented and
traditiona procedurd styles, mixing and matching as your gpplication requires. Python's object-oriented festures are
like those of C++, dthough they are much smpler to use.

[TeamLiB] =

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

1.2 The Python Standard Library and Extension M odules

Thereis more to Python programming than just the Python language: the standard Python library and other extension
modules are dmost asimportant for effective Python use as the languageitself. The Python standard library supplies
many well-designed, solid, 100% pure Python modules for convenient reuse. It includes modulesfor such tasks as
datarepresentation, string and text processing, interacting with the operating system and filesystem, and web
programming. Because these modules are written in Python, they work on al platforms supported by Python.

Extensgon modules, from the standard library or from elsewhere, let Python applications access functionaity supplied
by the underlying operating system or other software components, such as graphica user interfaces (GUISs),
databases, and networks. Extensions afford maximal speed in computationdly intensive tasks, such as XML parsing
and numeric array computations. Extension modules that are not coded in Python, however, do not necessarily enjoy
the same cross-platform portability as pure Python code.

Y ou can write specid-purpose extenson modulesin lower-level languages to achieve maximum performance for
small, computationaly intensve partsthat you originaly prototyped in Python. Y ou can dso use tools such as SWIG
to make exigting C/C++ librariesinto Python extension modules, aswell seein Chapter 24. Findly, you can embed
Python in gpplications coded in other languages, exposing existing application functiondity to Python scriptsvia
dedicated Python extension modules.

Thisbook documents many modules, both from the standard library and from other sources, in areas such as client-
and server-sde network programming, GUIs, numerica array processing, databases, manipulation of text and binary
files, and interaction with the operating system.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

1.3 Python Implementations

Python currently has two production-quality implementations, CPython and Jython, and one experimental
implementation, Python .NET. Thisbook primarily addresses CPython, which | refer to asjust Python for smplicity.
However, the digtinction between alanguage and itsimplementationsis an important one.

1.3.1 CPython

Classic Python (ak.a., CPython, often just called Python) is the fastest, most up-to-date, most solid and complete
implementation of Python. CPython isacompiler, interpreter, and set of built-in and optiona extension modules,
coded in standard C. CPython can be used on any platform where the C compiler complieswith the ISO/IEC
9899:1990 standard (i.e., all modern, popular platforms). In Chapter 2, I'll explain how to download and ingtal
CPython. All of thisbook, except Chapter 24 and afew sections explicitly marked otherwise, appliesto CPython.

1.3.2 Jython

Jython isa Python implementation for any Java Virtua Machine (VM) compliant with Java 1.2 or better. Such
NMsareavalablefor dl popular, modern platforms. To use Jython well, you need some familiarity with fundamenta
Javaclasses. Y ou do not have to code in Java, but documentation and examples for existing Java classes are
couched in Javaterms, so you need a nodding acquai ntance with Javato read and understand them. Y ou also need
to use Java supporting toolsfor tasks such as manipulating .jar filesand sgning applets. Thisbook deaswith Python,
not with Java. For Jython usage, you should complement this book with Jython Essentials, by Noel Rappin and
Samuee Pedroni (O'Rellly), possibly Javain aNutshell, by David Hanagan (O'Reilly), and, if needed, some of the
many other Javaresources available.

1.3.3 Choosing Between CPython and Jython

If your platform is able to run both CPython and Jython, how do you choose between them? First of al, don't
choose—download and ingtall them both. They coexist without problems, and they're free. Having them both on your
machine costs only some download time and alittle extra disk space.

To experiment, learn, and try things out, you will most often use CPython, asit'sfaster. To develop and deploy, your
best choice depends on what extension modules you want to use and how you want to distribute your programs.
CPython gpplications are generdly faster, particularly if they can make good use of suitable extension modules, such
as Numeric (covered in Chapter 15). The development of CPython versionsisfaster than that of Jython versions: at
the time of writing, for example, the next scheduled releaseis 2.2 for Jython, but 2.3 for CPython.

However, asyoull seein Chapter 25, Jython can use any Java class as an extension module, whether the class
comes from astandard Javalibrary, athird-party library, or alibrary you develop yourself. A Jython-coded
gpplication isa 100% pure Java gpplication, with al of Java's deployment advantages and issues, and runs on any
target machine having a suitable VM. Packaging opportunities are so identica to Javals.

Jython and CPython are both good, faithful implementations of Python, reasonably closein terms of usability and
performance. Given these pragmatic issues, either one may enjoy decisive practica advantagesin a specific scenario.
Thus, it iswise to become familiar with the strengths and weaknesses of each, to be able to choose optimally for each
devel opment task.

http://www.activestate.com/Initiatives/NET/Research.html
http://www.python.org/2.2.1/license.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

1.4 Python Development and Versions

Python is developed by the Python Labs of Zope Corporation, which consists of haf adozen core developers
headed by Guido van Rossum, Python'sinventor, architect, and Benevolent Dictator For Life (BDFL). Thistitle
meansthat Guido hasthefind say on what becomes part of the Python language and standard libraries.

Python intellectua property is vested in the Python Software Foundation (PSF), anon-profit corporation devoted to
promoting Python, with dozens of individua members (nominated for their contributionsto Python, and including dl
of the Python core team) and corporate sponsors. Most PSF members have commit privilegesto Python's CV Stree
on SourcefForge (http:/sf.net/cvs/group _1d=5470), and most Python CV S committers are members of the PSF.

Proposed changes to Python are detailed in public documents called Python Enhancement Proposals (PEPS),
debated (and sometimes advisorily voted upon) by Python developers and the wider Python community, and findly
approved or regjected by Guido, who takes debate and votesinto account but is not bound by them. Hundreds of
people contribute to Python devel opment, through PEPS, discussion, bug reports, and proposed patches to Python
sources, libraries, and documentation.

Python Labs releases minor versions of Python (2.x, for growing values of x) about once or twice ayear. 2.0 was
released in October 2000, 2.1 in April 2001, and 2.2 in December 2001. Python 2.3 is scheduled to bereleased in
early 2003. Each minor release adds features that make Python more powerful and smpler to use, but also takes
care to maintain backward compatibility. One day there will be a Python 3.0 release, which will be alowed to break
backward compatibility to some extent. However, that rleaseis still severd yearsin the future, and no specific plans
for it currently exis.

Each minor release 2.x starts with a phareleases, tagged as 2.xa0, 2.xal, and so on. After the aphas comes at least
one betarelease, 2.xbl, and after the betas at |east one release candidate, 2.xrcl. By the timethe final release of 2.x
comesout, itisaways solid, reliable, and well tested on al mgor platforms. Any Python programmer can help
ensure this by downloading aphas, betas, and rel ease candidates, trying them out on existing Python programs, and
filing bug reportsfor any problem that might emerge.

Once aminor releaseis out, most of the attention of the core team switches to the next minor release. However, a
minor release normally gets successive point releases (i.e., 2.x.1, 2.x.2 and so on) that add no functionality but can fix
errors, port Python to new platforms, enhance documentation, and add optimizations and tools.

The Python Business Forum (http://python-in-business.org) isan internationa society of companiesthat base their
business on Python. The Forum, among other activities, tests and maintains specia Python releases (known as
"Python-in-a-tie") that Python Labs certifies for industrid-strength robustness.

This book focuses on Python 2.2 (and al its point releases), the most stable and widespread release at the time of
thiswriting, and the basis of the current "Python-in-a-tie” efforts. It aso mentions afew changes scheduled to appear
in Python 2.3, and documents the parts of the language and libraries that are new in 2.2 and thus cannot be used with
the previous 2.1 release. Python 2.1 is till important becauseit's used in widely deployed Zope 2.x releases (the
current Zope releases, 3., rely on Python 2.2 and later). Also, at the time of thiswriting, the released version of
Jython supports only Python 2.1, not yet Python 2.2.

Among older releases of Python, the only one with alargeingtdled baseis 1.5.2, which is part of most ingtalations of
Red Hat Linux Releases 6.x and 7.x. However, this book does not address Python 1.5.2, which is over three years

http://sf.net/cvs/@group_id=5470
http://python-in-business.org/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

1.5 Python Resour ces

Therichest of al Python resourcesisthe Internet. The starting point is Python's Site, hitp:/Amww.python.org, whichis
full of interesting links that you will want to explore. And http:/mww.jython.org isamust if you have any interest in

Jython.

1.5.1 Documentation

Python and Jython come with good documentation. The manuas are available in many formats, suitable for viewing,
searching, and printing. Y ou can browse the manuas on the Web at http://mww.python.org/doc/current/. Y ou can
find linksto the various formats you can download at http:/mwww.python.org/doc/current/download.html, and
http://mww.python.org/doc/ haslinksto alarge variety of documents. For Jython, http:/mwww.jython.org/docs’ has
links to Jython-specific documents aswell as generd Python ones. The Python FAQ (Frequently Asked Questions)
isat http:/Mmww.python.org/doc/FAQ.html, and the Jython-specific FAQ isa
http:/Awww.jython.org/cgi-bin/fagw.py reg=index.

Most Python documentation (including this book) assumes some software devel opment knowledge. However,
Python is quite suitable for first-time programmers, so there are exceptionsto thisrule. A few good introductory
onlinetextsare:

Josh Cogliati's "Non-Programmers Tutorial For Python," available at
http://Aww.honors.montana.edu/~jjc/easytut/easytut/

Alan Gauld's"Learning to Program,” available at http://www.crosswinds.net/~agauld/

Allen Downey and Jeffrey Elkner's"How to Think Like a Computer Scientist (Python Version),” avalable a
http://mww.ibiblio.org/obp/think CSpy/

1.5.2 Newsgroups and Mailing Lists

The URL http:/Amww.python.org/psalMailingListishtml haslinksto Python-related mailing lists and newsgroups.
Always use plain-text format, not HTML, in al messagesto mailing lists and newsgroups.

The Usenet newsgroup for Python discussionsis comp.lang.python. The newsgroup isdso availableasamailing list.
To subscribe, send a message whose body is the word subscribe to python-list-request@python.org. Python-related
announcements are posted to comp.lang.python.announce. To subscribe to its mailing-list equivadent, send amessage
whose body isthe word subscribe to python-announce-list-request@python.org. To subscribe to Jython's mailing
lig, vigt http:/ligs.sf .net/liggliginfo/jython-users. To ask for individua help with Python, email your question to
python-hep@python.org. For questions and discussions about using Python to teach or learn programming, writeto
tutor@python.org.

1.5.3 Special Interest Groups

http://www.python.org/default.htm
http://www.jython.org/default.htm
http://www.python.org/doc/current/default.htm
http://www.python.org/doc/current/download.html
http://www.python.org/doc/default.htm
http://www.jython.org/docs/default.htm
http://www.python.org/doc/FAQ.html
http://www.jython.org/cgi-bin/faqw.py@req=index
http://www.honors.montana.edu/~jjc/easytut/easytut/default.htm
http://www.crosswinds.net/~agauld/default.htm
http://www.ibiblio.org/obp/thinkCSpy/default.htm
http://www.python.org/psa/MailingLists.html
mailto:python-list-request@python.org
mailto:comp.lang.python.announce
mailto:python-announce-list-request@python.org
http://lists.sf.net/lists/listinfo/jython-users
mailto:python-help@python.org
mailto:tutor@python.org
http://www.python.org/sigs/default.htm
http://www.python.org/sigs/c++-sig/default.htm
http://www.python.org/sigs/i18n-sig/default.htm
http://www.python.org/sigs/image-sig/default.htm
http://www.python-in-business.org/default.htm
http://pythonjournal.cognizor.com/default.htm
http://www.vex.net/parnassus/default.htm
http://www.activestate.com/ASPN/Python/Cookbook
http://www.pyzine.com/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] e
Chapter 2. Installation

Y ou can ingdl Python, in both classic (CPython) and VM (Jython) versions, on most platforms. With asuitable
deveopment system (C for CPython, Javafor Jython), you can ingtal Python from its source code distribution. On
popular platforms, you dso have the dternative of ingtaling from aprebuilt binary distribution.

Ingtalling CPython from abinary distribution isfaster, saves you substantiad work on some platforms, and isthe only
possibility if you have no suitable C development system. Ingtaling from a source code distribution gives you more
control and flexibility, and isthe only possibility if you can't find asuitable prebuilt binary distribution for your
platform. Even if you ingal from binaries, | recommend you aso download the source distribution, which includes
examples and demos that may be missing from prebuilt binary packages.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

2.1 Installing Python from Source Code

Toingal Python from source code, you need a platform with an 1SO-compliant C compiler and ancillary tools such
as make. On Windows, the normal way to build Python iswith the Microsoft product Visua C++.

To download Python source code, visit http:/Amww.python.org and follow the link labeled Download. The latest
verson at thetime of thiswriting is.
http:/Amww.python.org/ftp/python/2.2.2/Python-2.2.2.t9z

The .tgz fileextensonisequivdent to .tar.gz (i.e., atar archive of files, compressed by the powerful and popular
gZp compressor).

2.1.1 Windows

On Windows, ingtalling Python from source code can be a chore unless you are dready familiar with Microsoft
Visua C++ and used to working at the Windows command line (i.e., in the text-oriented windows known as
MS-DOS Prompt or Command Prompt, depending on your version of Windows).

If the following ingtructions give you trouble, | suggest you skip ahead to the materia on ingtaling Python from
binaries later in this chapter. It may be agood idea, on Windows, to do an ingtdlation from binaries anyway, even if
you dsoingdl from source code. Thisway, if you notice anything strange while using the verson you ingtaled from
source code, you can double-check with the installation from binaries. If the strangeness goes away, it must have
been due to some quirk in your instalation from source code, and then you know you must double-check the latter.

In the following sections, for clarity, | assume you have made anew directory named C:\Py and downloaded
Python-2.2.2.tgz there. Of course, you can choose to name and place the directory asit best suits you.

2.1.1.1 Uncompressing and unpacking the Python sour ce code

Y ou can uncompress and unpack a .tgz filewith programs tar and gunzp. If you do not have tar and gunzp, you
can download the collection of utilities ftp:/ftp.objectcentral.com/winutils.zip into C:\Py. If you do not have other
waysto unpack aZIPfile, download ftp://ftp.th-soft.com/UNZIP.EXE into C:\Py. Open an MS-DOS Prompt
window and give the following commands:

C\> My Docunents>cd \Py
C:\Py> unzip winutils
[unzip lists the files it is unpacking - omtted here]
C:\Py> gunzip Python-2.2.2.tgz
C\Py> tar xvf Python-2.2.2.tar
[tar lists the files it is unpacking - omtted here]

C\Py>

Commercid programs WinZip (http:/mww.winzip.com) and PowerArchiver (http://Awww.powerarchiver.com) can
also uncompress and unpack .tgz archives. Whether via gunzip and tar, acommercia program, or some other
program, you now have adirectory C:\Py\Python-2.2.2, theroot of atree that contains the entire standard Python
digtribution in source form.

2.1.1.2 Building the Python sour ce code with Microsoft Visual C++

Open the workspace file C:\Py\Python-2.2.2\PCbuild\pcbuild.dsw with Microsoft Visuad C++, for example by
gartina Windows Exnlorer aoina to directorv C:\PWvWPvthon-2 2 2\PCbhuiild and double-clickina on file ncbuild dsw

http://www.python.org/default.htm
http://www.python.org/ftp/python/2.2.2/Python-2.2.2.tgz
http://www.winzip.com/default.htm
http://www.powerarchiver.com/default.htm
http://cygwin.com/default.htm
http://www.cwi.nl/~jack/macpython.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

2.2 Installing Python from Binaries

If your platform is popular and current, you may find a prebuilt and packaged binary version of Python ready for
ingallation. Binary packages are typicaly self-ingaling, either directly as executable programs, or viaappropriate
system tools, such as the RedHat Package Manager (RPM) on Linux and the Microsoft Ingtaler (MS) on
Windows. Once you have downloaded a package, ingtdl it by running the program and interactively choosing
ingtalation parameters, such asthe directory where Python isto beingtalled.

To download Python binaries, vist http:/Amww.python.org and follow the link |abeled Download. At thetime of this
writing, the only binary ingtaler directly available from the main Python steisaWindowsingaler executable:
http://Amww.python.org/ftp/python/2.2.2/Python-2.2.2.exe

Many third parties supply free binary Python instalersfor other platforms. For Linux distributions, see
http://rpmfind.net if your distribution is RPM-based (RedHat, Mandrake, SUSE, and so on) or http://mww.debian.org
for Debian. The dite http://mww.python.org/download/ provideslinksto binary distributions for Macintosh, OS2,
Amiga, RISC OS, QNX, VxWorks, IBM AS/400, Sony PlayStation 2, and Sharp Zaurus. Older Python versions,
mainly 1.5.2, are aso usable and functiona, though not as powerful and polished as the current Python 2.2.2. The
download page provideslinksto 1.5.2 instalersfor older or less popular platforms (MS-DOS, Windows 3.1, Psion,
BeOS, etc.).

ActivePython (http://www.activestate.com/Products/ActivePython) is a binary package of Python 2.2 for 32-bit
versons of Windows and x86 Linux.

[TeamLiB]

http://www.python.org/default.htm
http://www.python.org/ftp/python/2.2.2/Python-2.2.2.exe
http://rpmfind.net/default.htm
http://www.debian.org/default.htm
http://www.python.org/download/default.htm
http://www.activestate.com/Products/ActivePython

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

2.3 Installing Jython

Toingdl Jython, you need a Java Virtual Machine (VM) that complieswith Java 1.1 or higher. See
http:/Amww.jython.org/platform.html for advice on VMsfor your platform.

To download Jython, visit http:/Aww.jython.org and follow the link labeled Download. Thelatest version at thetime
of thiswriting is
http://prdownl cads.sf .net/jython/jython-21.class

In the following section, for clarity, | assume you have created anew directory named C:\Jy and downloaded
jython-21.class there. Of course, you can choose to name and place the directory asit best suits you. On Unix-like
platforms, in particular, the directory namewill morelikely be something like ~/Jy.

The Jython inddler .class fileisasdf-ingalling program. Open an MS-DOS Prompt window (or ashell prompt ona
Unix-like platform), change directory to C:\Jy, and run your Javainterpreter on the Jython ingtaller. Make sureto
include directory C:\Jy in the Java CLASSPATH. With most releases of Sun's Java Development Kit (JDK), for
example, you can run:

C\Jy> java -cp . jython-21

ThisrunsaGUI ingtdler that lets you choose destination directory and options. If you want to avoid the GUI, you
can use the -0 switch on the command line. The switch lets you specify the ingtalation directory and options directly
on the command line. For example:

C\Jy> java -cp . jython-21 -o C\Jython-2.1 deno |lib source

ingtals Jython, with al optiona components (demos, libraries, and source code), in directory C:\Jython-2.1. The
Jython ingtdlation buildstwo smal, useful command files. One, run as jython (named jython.bat on Windows), runs
theinterpreter. The other, run as jythonc, compiles Python source into VM bytecode. Y ou can add the Jython
ingtalation directory to your PATH, or copy these command filesinto any directory on your PATH.

Y ou may want to use Jython with different JDK s on the same machine. For example, while DK 1.4 isbest for most
development, you may also need to use JDK 1.1 occasionadlly in order to compile applets that can run on browsers
that support only Java 1.1. In such cases, you could share asingle Jython ingtdlation among multiple VMs.
However, to avoid confusion and accidents, | suggest you perform separate ingtallations from the same Jython
download on each VM you want to support. Suppose, for example, that you have JDK 1.4 ingtdled in C:\Jdk14
and DK 1.1ingdledin C:\Jdk11. Inthiscase, you could use the commands:

C\Jy> \Jdkl4\java -cp . jython-21 -o C\Jy21-14 deno lib source

C\Jy> \Jdkll\java -cp . jython-21 -o C\Jy21-11 deno lib source

With these ingtallations, you could then choose to work off C:\Jy21-14 most of thetime (e.g., by placing it in your
PATH), and cd to C:\Jy21-11 when you specificaly need to compile appletswith JDK 1.1.

[TeamLiB]

http://www.jython.org/platform.html
http://www.jython.org/default.htm
http://prdownloads.sf.net/jython/jython-21.class

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 3. The Python Interpreter

To develop software systemsin Python, you produce text files that contain Python source code and documentation.
Y ou can use any text editor, including thosein Integrated Development Environments (IDES). Y ou then processthe
source fileswith the Python compiler and interpreter. Y ou can do thisdirectly, or implicitly insdean IDE, or via
another program that embeds Python. The Python interpreter also lets you execute Python code interactively, asdo
IDEs.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

3.1 The python Program

The Python interpreter program isrun as python (it's named python.exe on Windows). python includes both the
interpreter itself and the Python compiler, which isimplicitly invoked, as needed, on imported modules. Depending on
your system, the program may haveto bein adirectory listed in your PATH environment varigble. Alternatively, as
with any other program, you can give acomplete pathnameto it at the command (shell) prompt, or in the shell script
(or .BAT file, shortcut target, etc.) that runsit.[1] On Windows, you can aso use Start ==* Programs = Python 2.2
= Python (command line).

[1] Thismay involve using quotes, if the pathname contains Spaces—again, this depends on your operating system.

3.1.1 Environment Variables

Besides PATH, other environment variables affect the python program. Some environment variables have the same
effects as options passed to python on the command line; these are documented in the next section. A few provide
Seitings not available viacommand-line options:

PYTHONHOME

The Python ingalation directory. A lib subdirectory, containing the stlandard Python library modules, should exist
under thisdirectory. On Unix-like systems, the standard library modules should be in subdirectory lib/python-2.2 for
Python 2.2, lib/python-2.3 for Python 2.3, and so on.

PYTHONPATH

A ligt of directories, separated by colons on Unix-like systems and by semicolons on Windows. Modules are
imported from these directories. Thisextendstheinitia value for Python's sys.path variable. Modules, importing, and
the sys.path variable are covered in Chapter 7.

PYTHONSTARTUP

The name of a Python sourcefile that is automaticaly executed each time an interactive interpreter sesson starts. No
suchfileisrunif thisvariableisnot set, or if it isset to the path of afilethat isnot found. The PY THONSTARTUP
fileis not used when you run a Python script: it isused only when you start an interactive session.

How you set and examine environment variables depends on your operating system: shell commands, persistent
gartup shell files(e.g.,, AUTOEXEC.BAT on Windows), or other approaches (e.g., Start = Settings = Control
Pand = System = Environment on Windows/NT, 2000, and XP). Some Python versions for Windows aso ook
for thisinformation in the registry, in addition to the environment. On Macintosh systems, the Python interpreter is
started through the Pythonlinterpreter icon and configured through the EditPythonPrefsicon. See
http:/Awww.python.org/doc/current/mac/mac.html for information about Python on the Mac.

3.1.2 Command-Line Syntax and Options

The Python interpreter command-line syntax can be summarized asfollows:
[pat h] pyt hon {options} [-c¢c command | file | -] {argunents}

Here, brackets ([]) denote something that is optional, braces ({ }) enclose items of which O or more may be present,

and vertica bars (]) show a choice between dternatives (with none of them aso being a possibility).

options are case-sengtive short strings, starting with ahyphen, that ask python for anon-default behavior. Unlike

moct \Ai1ndownwe nronrame mvihon onlyy arcente onti one o artina with 2 hvnhen not with a dadh Bvabhon cona otently/

http://www.python.org/doc/current/mac/mac.html
http://newcenturycomputers.net/projects/readline.html
http://starship.python.net/crew/mwh/hacks/pyrepl.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

3.2 Python Development Environments

The Python interpreter's built-in interactive mode is the Smplest devel opment environment for Python. It isabit
primitive, but it is lightweight, hasasmal footprint, and starts fast. Together with an appropriate text editor (as
discussed later in this chapter) and line-editing and history facilities, it isa usable and popular devel opment
environment. However, there are anumber of other devel opment environments that you can dso use.

3.21I1DLE

Python's Integrated Devel_opment Environment (IDLE) comes with the standard Python distribution. IDLE isa
cross-platform, 100% pure Python application based on Tkinter (see Chapter 16). IDLE offersa Python shell,
smilar to interactive Python interpreter sessons but richer in functiondity. It dso includes atext editor optimized to
edit Python source code, an integrated interactive debugger, and severa specidized browsersiviewers.

3.2.2 Other Free Cross-Platform Python IDEs

IDLE ismature, stable, easy to use, and rich in functiondity. Promising new Python IDEs that share IDLE'sfreeand
cross-platform nature are emerging. Red Hat's Source Navigator (http://sources.redhat.com/sourcenav/) supports
many languages. It runs on Linux, Solaris, HPUX, and Windows. Boa Congtructor (http://boa-constructor.sf.net/) is
Python-only and still betarlevel, but well worth trying out. Boa Constructor includes a GUI builder for the
wxWindows cross-platform GUI toolkit.

3.2.3 Platfor m-Specific Free Python IDEs

Python is cross-platform, and this book focuses on cross-platform tools and components. However, Python also
provides good platform-specific facilities, including IDES, on many platformsit supports. For the Macintosh,
MacPython includes an I DE (see http://Aww.python.org/doc/current/mac/mac.html). On Windows, ActivePython
includes the PythonWin IDE. PythonWin is aso available as afree add-on to the standard Python distribution for
Windows, part of Mark Hammond's powerful win32all extensions (see http://starship.python.net/crew/mhammond).

3.2.4 Commercial Python IDEs

Severa companies sall commercid Python IDES, both cross-platform and platform-specific. Y ou must pay for them
If you use them for commercia development and, in most cases, even if you develop free software. However, they
offer support contracts and rich arrays of toals. If you have funding for software tool purchases, it isworth looking at
thesein detail and trying out their free demos or evauations. Most work on Linux and Windows.

Secret Labs (http:/mww.pythonware.com) offers a Python IDE called PythonWorks. It includes a GUI designer for
Tkinter (covered in Chapter 16). Archaeopterix sellsaPython IDE, Wing, notable for its powerful source-browsing
and remote-debugging facilities (http://archaeopterix.com/wingide). theK ompany sells a Python IDE, BlackAdder,
that includesa GUI builder for the PyQt GUI toolkit (http://mww.thekompany.com/products/bl ackadder).

ActiveState (hitp://www.activestate.com) has two Python IDE products. Komodo is built on top of Mozilla
http:/mww.mozilla.org) and includes remote debugging capabilities. Visud Python isfor Windows only, and letsyou
use Microsoft's multi-language Visud Studio .NET IDE for Python development.

3.25 Free Text Editorswith Python Support

http://sources.redhat.com/sourcenav/default.htm
http://boa-constructor.sf.net/default.htm
http://www.python.org/doc/current/mac/mac.html
http://starship.python.net/crew/mhammond
http://www.pythonware.com/default.htm
http://archaeopterix.com/wingide
http://www.thekompany.com/products/blackadder
http://www.activestate.com/default.htm
http://www.mozilla.org/default.htm
http://www.emacs.org/default.htm
http://www.python.org/emacs
http://www.vim.org/default.htm
http://www.scintilla.org/default.htm
http://fte.sf.net/default.htm
http://www.mkidesign.com/syneditinfo.html
http://glimmer.sf.net/default.htm
http://cooledit.sf.net/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
3.3 Running Python Programs

Whatever tools you use to produce your Python gpplication, you can see your application as a set of Python source
files A script isafilethat you can run directly. A module isafilethat you can import (as covered in Chapter 7) to
provide functiondity to other files or to interactive sessons. A Python file can be both amodule and ascript,
exposing functiondity when imported, but aso suitable for being run directly. A useful and widespread convention is
that Python filesthat are primarily meant to be imported as modules, when run directly, should execute self-test
operations. Testing is covered in Chapter 17.

The Python interpreter automatically compiles Python source files as needed. Python source filesnormaly have
extenson .py. Python saves the compiled bytecode file for each module in the same directory as the modul€'s source,
with the same basename and extension .pyc (or .pyo if Python isrun with option -O). Python does not save the
compiled bytecode form of ascript when you run the script directly; rather, Python recompiles the script each time
you run it. Python saves bytecode files only for modules you import. It automatically rebuilds each modul€'s bytecode
file whenever necessary, for example when you edit the modul€'s source. Eventualy, for deployment, you may
package Python modules using tools covered in Chapter 26.

Y ou can run Python code interactively, with the Python interpreter or an IDE. Normdly, however, you initiate
execution by running atop-level script. To run ascript, you giveits path as an argument to python, as covered earlier
in this chapter. Depending on your operating system, you can invoke python directly, from ashdl script, orina
command file. On Unix-like systems, you can make a Python script directly executable by setting the file's permission
bitsx and r and beginning the script with aso-caled shebang line, whichisafirg line of the form:

#!/usr/bin/env python {options}

providing apath to the python program.

On Windows, you can associate file extensions .py, .pyc, and .pyo with the Python interpreter in the Windows
registry. Most Python versionsfor Windows perform this association when ingtalled. Y ou can then run Python scripts
with the usua Windows mechanisms, such as double-clicking on their icons. On Windows, when you run a Python
script by double-clicking on the script'sicon, Windows automaticaly closes the text-mode console associated with
the script as soon as the script terminates. If you want the console to linger in order to alow the user to read the
script's output on the screen, you need to ensure the script doesn't terminate too soon, for example by using the
following asthe script's last Statement:

raw_ i nput (' Press Enter to ternminate')

Thisisnot necessary when you run the script from a pre-existing console (also known asaMS-DOS Prompt or
Command Prompt window).

On Windows, you can dso use extension .pyw and interpreter program pythonw.exe ingtead of .py and python.exe.
The w variants run Python without a text-mode console, and thus without standard input and output. These variants
are gppropriate for scriptsthat rely on GUIs. Y ou normally use them only when the script isfully debugged, to keep
standard output and error available for information, warnings, and error messages during devel opment.

Applications coded in other languages may embed Python, controlling the execution of Python code for their own
purposes. We examine this subject further in Chapter 24.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

3.4 The Jython Interpreter

The jython interpreter built during ingtallation (see Chapter 2) isrun smilarly to the python program:
[path]jython {options} [-j jar | -c command | file | -] {arguments}

-] jar tdlsjython that themain scripttorunis__run__.py inthe .jar file. Options-i, -S, and -v are the same asfor
python. --helpislike python's-h, and --versonislike python's--V. Instead of environment variables, jython uses
atext filenamed registry in theingtdlation directory to record properties with structured names. Property
python.path, for example, isthe Jython equivaent of Python's environment variable PY THONPATH. Y ou can aso
st properties with jython command-line options, in the form -D name=value.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

| TeamLiB | MEXT F

Part |1: Core Python Language
and Built-ins

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

Chapter 9
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 4. The Python Language

This chapter isaquick guide to the Python language. To learn Python from scratch, | suggest you start with Learning

Python, by Mark Lutz and David Ascher (O'Rellly). If you aready know other programming languages and just want
to learn the specifics of Python, this chapter isfor you. I'm not trying to teach Python here, so were going to cover a

lot of ground at a pretty fast pace.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

4.1 Lexical Structure

Thelexica structure of aprogramming language isthe set of basic rulesthat govern how you write programsin that
language. It isthe lowest-level syntax of the language and specifies such things as what variable names|ook like and
what characters are used for comments. Each Python sourcefile, like any other text file, is a sequence of characters.
Y ou can aso usefully seeit as asequence of lines, tokens, or statements. These different syntactic views complement
and reinforce each other. Python is very particular about program layout, especialy with regard to linesand
indentation, so you'll want to pay attention to thisinformation if you are coming to Python from another language.

4.1.1 Lines and Indentation

A Python program is composed of a sequence of logical lines, each made up of one or more physical lines. Each
physicd line may end with acomment. A pound sign (#) that isnot insde astring literal beginsacomment. All
characters after the # and up to the physical line end are part of the comment, and the Python interpreter ignores
them. A line containing only whitespace, possibly with acomment, iscaled a blank line, and isignored by the
interpreter. In aninteractive interpreter sesson, you must enter an empty physica line (without any whitespace or
comment) to terminate amultiline statement.

In Python, the end of a physical line marksthe end of most statements. Unlike in other languages, Python statements
are not normally terminated with addimiter, such asasemicolon (;). When agtatement istoo long to fit onasingle
physicd line, you can join two adjacent physicd linesinto alogica line by ensuring that the first physical linehasno
comment and ends with abackdash (\). Python aso joins adjacent physical linesinto onelogicd lineif an open
parenthesis ((), bracket ([), or brace ({) has not yet been closed. Triple-quoted string literals can aso span physica
lines. Physical lines after thefirst onein alogica line are known as continuation lines. The indentation issues
covered next do not gpply to continuation lines, but only to thefirst physical line of each logica line.

Python usesindentation to express the block structure of aprogram. Unlike other languages, Python does not use
braces or begin/end delimiters around blocks of statements. indentation is the only way to indicate such blocks. Each
logicdl linein aPython program isindented by the whitespace onitsleft. A block isa contiguous sequence of logica
lines, dl indented by the same amount; the block isended by alogica linewith lessindentation. All Satementsina
block must have the same indentation, as must dl clausesin acompound statement. Standard Python styleisto use
four spaces per indentation level. Thefirst stlatement in asource file must have no indentation (i.e., it must not begin
with any whitespace). Additionally, statements typed at the interactive interpreter prompt >>> (covered in Chapter 3)
must have no indentation.

A tabislogicaly replaced by up to 8 spaces, so that the next character after thetab falsinto logica column 9, 17,
25, etc. Don't mix spaces and tabs for indentation, since different tools (e.g., editors, email systems, printers) treat
tabs differently. The -t and -tt options to the Python interpreter (covered in Chapter 3) ensure against incongstent tab
and space usage in Python source code. Y ou can configure any good editor to expand tabs to spaces so that all
Python source code you write contains only spaces, not tabs. Y ou then know that al tools, including Python itsdlf,
are going to be consigtent in handling the crucial matter of indentation in your sourcefiles.

4.1.2 Tokens

Python breaks each logicd lineinto a sequence of dementary lexica components, called tokens. Each token
corresponds to a substring of thelogica line. The normal token types are identifiers, keywords, operators, ddlimiters,
and literds, as covered in the following sections. Whitespace may be freely used between tokens to separate them.
Some whitespace separation is needed between logicaly adjacent identifiers or keywords; otherwise, they would be
parsed asasngle, longer identifier. For example, printx isasingle identifie—to write the keyword print followed by
identifier x, you need to insert some whitespace (e.g., print x).

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

4.2 Data Types

The operation of a Python program hinges on the data it handles. All data valuesin Python are represented by
objects, and each object, or value, has atype. An object’s type determines what operations the object supports, or,
in other words, what operations you can perform on the data va ue. The type aso determines the object's attributes
and items (if any) and whether the object can be altered. An object that can be altered is known as amutable object,
while one that cannot be dtered is an immutable object. | cover object attributes and itemsin detail later in this

chapter.

The built-in type(obj) accepts any object asits argument and returns the type object that represents the type of obj.
Another built-in function, isngtance(obj ,type), returns True if object obyj is represented by type object type;
otherwise, it returns False (built-in names True and False were introduced in Python 2.2.1; in older versions, 1and O
are used instead).

Python has built-in objects for fundamental datatypes such as numbers, strings, tuples, lists, and dictionaries, as
covered in the following sections. Y ou can a so create user-defined objects, known as classes, as discussed in detall

in Chapter 5.
4.2.1 Numbers

The built-in number objectsin Python support integers (plain and long), floating-point numbers, and complex
numbers. All numbersin Python are immutable objects, meaning that when you perform an operation on anumber
object, you dways produce a new humber object. Operations on numbers, caled arithmetic operations, are covered
later in this chapter.

Integer literals can be decimd, octal, or hexadecima. A decimal literd isrepresented by a sequence of digitswhere
thefirg digitisnon-zero. An octd literd is specified with a0 followed by a sequence of octd digits(0to 7). To
indicate a hexadecimd literd, use Ox followed by a sequence of hexadecimal digits (Oto 9 and A to F, in either
upper- or lowercase). For example:

1, 23, 3493 # Decimal integers
01, 027, 06645 # Cctal integers
Ox1, O0x17, OxDA5 # Hexadeci mal integers

Any kind of integer literd may be followed by theletter L or | to denote along integer. For instance:

1L, 23L, 99999333493L # Long deci nmal integers
01L, 027L, 01351033136165L # Long octal integers

Ox1L, Ox17L, 0x17486CBC75L # Long hexadeci mal integers

Use uppercase L here, not lowercase |, which may look like the digit 1. The difference between along integer and a
plaininteger isthat along integer has no predefined sizelimit: it may be aslarge asmemory dlows. A plaininteger
takes up afew bytes of memory and has minimum and maximum vauesthat are dictated by machine architecture.
sysmaxint isthe largest available plain integer, while -sysmaxint-1 isthe largest negative one. On typica 32-bit
machines, sysmaxint is 2147483647.

A floating-point literd is represented by a sequence of decimd digits that includes adecima point (.), an exponent
part (an e or E, optionadly followed by + or -, followed by one or more digits), or both. The leading character of a
floating-point literal cannot be e or E: it may be any digit or aperiod (.) (prior to Python 2.2, aleading 0 had to be
immediately followed by aperiod). For example:

0., 0.0, .0, 1., 1.0, 1e0, 1.e0, 1.0e0

A Python floating-point value corresponds to a C double and sharesits limits of range and precision, typicaly 53 bits

http://www.unicode.org/charts/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

4.3 Variables and Other References

A Python program accesses data val ues through references. A reference isaname that refers to the specific location
in memory of avalue (object). References take the form of variables, attributes, and items. In Python, avariable or
other reference has no intringic type. The object to which areferenceisbound at a given time does have atype,
however. Any given reference may be bound to objects of different types during the execution of a program.

4.3.1 Variables

In Python, there are no declarations. The existence of avariable depends on astatement that binds the variable, or,
in other words, that sets aname to hold areference to some object. Y ou can aso unbind avariable by resetting the
name o it no longer holds areference. Assgnment statements are the most common way to bind variables and other
references. The del statement unbinds references.

Binding areference that was aready bound is aso known as rebinding it. Whenever binding ismentioned in this
book, rebinding isimplicitly included except whereit isexplicitly excluded. Rebinding or unbinding areference hasno
effect on the object to which the reference was bound, except that an object disappears when nothing referstoit.
The automatic cleanup of objectsto which there are no referencesis known as garbage collection.

Y ou can name avariable with any identifier except the 29 that are reserved as Python's keywords (see Section
4.1.2.2 earlier inthis chapter). A variable can be global or loca. A global variableis an attribute of amodule object (
Chapter 7 coversmodules). A local variablelivesin afunction'sloca namespace (see Section 4.10 later inthis
chapter).

4.3.1.1 Object attributesand items

The digtinction between attributes and items of an object isin the syntax you use to access them. An attribute of an
object isdenoted by areference to the object, followed by aperiod (.), followed by an identifier caled the attribute
name (i.e., x.y refersto the attribute of object x that isnamed y).

Anitem of an object is denoted by areference to the object, followed by an expression within brackets ([]). The
expression in bracketsis called the index or key to the item, and the object is called the container of theitem (i.e, X[
y] refersto theitem at key or index y in container object x).

Attributes that are callable are dso known as methods. Python draws no strong distinction between calable and
non-callable attributes, as other languages do. Generd rules about attributes a so gpply to callable attributes
(methods).

4.3.1.2 Accessing nonexistent references

A common programming error istrying to access areference that does not exist. For example, avariable may be
unbound, or an attribute name or item index may not be valid for the object to which you apply it. The Python
compiler, when it analyzes and compiles source code, diagnoses only syntax errors. Compilation does not diagnose
semantic errors such astrying to access an unbound attribute, item, or variable. Python diagnoses semantic errors
only when the errant code executes, i.e., a runtime. When an operation is a Python semantic error, attempting it
raises an exception (see Chapter 6). Accessing anonexistent varigble, atribute, or item, just like any other semantic
error, raises an exception.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

4.4 Expressions and Operators

An expression isaphrase of code that the Python interpreter can evaluate to produce avaue. The smplest
expressonsare literas and identifiers. Y ou build other expressions by joining subexpress ons with the operators
and/or delimitersin Table 4-2. Thistable lists the operators in decreasing order of precedence, so operators with
higher precedence are listed before those with lower precedence. Operators listed together have the same
precedence. The A column lists the associdtivity of the operator, which can be L (left-to-right), R (right-to-left), or
NA (non-associtive).

InTable 4-2, expr, key, f, index, x, and y indicate any expression, while attr and arg indicate identifiers. The
notation ,... indicates that commasjoin zero or more repetitions, except for string conversion, where one or more
repetitions are alowed. A trailing commais aso dlowed and innocuousin al such cases, except with string
conversion, whereit's forbidden.

Table 4-2. Operator precedence in expressions

Operator Description A

Texpr,..." String converson NA

{key:expr, ...} Dictionary cregtion NA
[expr,...] List cregtion NA
(expr,...) Tuple crestion or smple parentheses NA
f(expr,...) Function call L
X[i ndex: i ndex] Sicing L
X[i ndex] Indexing L
x.attr Attribute reference L
X**y Exponentiation (x to yth power) R
"X Bitwise NOT NA

+X, -X Unary plusand minus NA

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

4.5 Numeric Operations

Python supplies the usud numeric operations, asyou've just seenin Table 4-2. All numbers are immutable objects,
S0 when you perform a numeric operation on a number object, you aways produce anew number object. Y ou can
access the parts of acomplex object z as read-only attributes z.real and z.imag. Trying to rebind these attributeson a
complex object raises an exception.

Note that a number's optiond + or - Sgn, and the + that joins afloating-point literal to an imaginary oneto makea
complex number, are not part of the literds syntax. They are ordinary operators, subject to normal operator
precedence rules (see Table 4-2). Thisiswhy, for example, -2** 2 eva uates to -4: exponentiation has higher
precedence than unary minus, so the whole expression parses as-(2**2), not as (-2)** 2.

4.5.1 Coercion and Conversions

Y ou can perform arithmetic operations and comparisons between any two numbers. If the operands types differ,
coercion gpplies. Python converts the operand with the smaller type to the larger type. The types, in order from
smallest to largest, are integers, long integers, floating-point numbers, and complex numbers.

Y ou can dso perform an explicit converson by passing anumeric argument to any of the built-ins: int, long, float, and
complex. int and long drop their argument'sfractiona part, if any (e.g., int(9.8) is9). Converting from a.complex
number to any other numeric type drops the imaginary part. Y ou can dso cal complex with two arguments, giving
red and imaginary parts.

Each built-in type can dso take a string argument with the syntax of an appropriate numeric literd with two small
extensons. the argument string may start with asign and, for complex numbers, may sum or subtract rea and
imaginary parts. int and long can also be called with two arguments: the first one astring to convert, and the second
onetheradix, an integer between 2 and 36 to use as the base for the conversion (e.g., int('101',2) returns 5, the value
of 101" in base 2).

4.5.2 Arithmetic Oper ations

If the right operand of /, //, or % is 0, Python raises aruntime exception. The // operator, introduced in Python 2.2,
performs truncating division, which meansit returns an integer result (converted to the same type as the wider
operand) and ignores the remainder, if any. When both operands are integers, the / operator behaveslike// if you are
using Python 2.1 and earlier or if the switch -Qold was used on the Python command line (-Qold isthe default in
Python 2.2). Otherwise, / performstrue divison, returning afloating-point result (or acomplex result, if either
operand isacomplex number). To have/ perform true division on integer operandsin Python 2.2, use the switch
-Qnew on the Python command line or begin your source file with the statement:

fromfuture inport division

This ensuresthat operator / works without truncation on any type of operands.

To ensure that your program's behavior does not depend on the -Q switch, use// (in Python 2.2 and later) to get
truncating division. When you do not want truncation, ensure that at |east one operand is not an integer. For example,
instead of alb, use 1.* alb to avoid making any assumption on the types of aand b. To check whether your program
has versgon dependenciesin its use of division, use the switch -Qwarn on the Python command line (in Python 2.2
and later) to get warnings about uses of / on integer operands.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

4.6 Sequence Operations

Python supports avariety of operations that can be applied to sequence types, including strings, lists, and tuples.

4.6.1 Sequencesin General

Sequences are containers with items ble by indexing or dicing, aswell discuss shortly. The built-in len function
takes a container as an argument and returns the number of itemsin the container. The built-in min and max functions
take one argument, a non-empty sequence (or other iterable) whose items are comparable, and they return the
smalest and largest itemsin the sequence, respectively. Y ou can dso cal min and max with multiple arguments, in
which casethey return the smallest and largest arguments, respectively.

4.6.1.1 Coercion and conversions

Thereisno implicit coercion between different sequence types except that norma strings are coerced to Unicode
gringsif needed. Conversion to stringsis covered in detail in Chapter 9. Y ou can cal the built-in tupleand list
functionswith asingle argument (a sequence or other iterable) to get an instance of the type you're calling, with the
sameitemsin the same order asin the argument.

4.6.1.2 Concatenation

Y ou can concatenate sequences of the same type with the + operator. Y ou can aso multiply any sequence Shy an
integer n with the* operator. Theresult of S*n or n* Sisthe concatenation of n copiesof S If niszero or lessthan
zero, the result is an empty sequence of the sametypeas S.

4.6.1.3 Sequence member ship

The x in Soperator tests to see whether object x equalsany itemin the sequence S. It returns Trueif it does and
Fdseif it doesn't. Smilarly, the x not in Soperator isjust likenot (xin S).

4.6.1.4 Indexing a sequence

The nth item of a sequence Sisdenoted by an indexing: §n]. Indexing in Python is zero-based (i.e, thefirg itemin S
iIs§Q]). If Shas L items, theindex n may be0, 1, ... up to and including L-1, but no larger. n may also be-1, -2, ...
downto and including -L, but no smaller. A negative n indicatesthe sameitemin Sas L+n does. In other words, S
[-1] isthelast dement of S §-2] isthe next-to-last one, and so on. For example:

x =1[1,2,3,4]

x[1] # 2

x[- 1] # 4

Using an index greater than or equal to L or lessthan -L raises an exception. Assigning to anitemwith aninvadid
index also raises an exception. You can add elementsto alist, but to do so you assign to adice, not anitem, aswell
discuss shortly.

4.6.1.5 Slicing a sequence

Y ou can denote a subsequence of Swithadicing, usngthesyntax Jij], wherei and j areintegers. Jij] isthe
subsequence of Sfromthe ith item, included, to the jth item, excluded. Note that in Python, al rangesinclude the

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

4.7 Dictionary Oper ations

Python provides avariety of operations that can be applied to dictionaries. Since dictionaries are containers, the
built-in len function can take adictionary asits single argument and return the number of items (key/vaue pairs) in the
dictionary object.

4.7.1 Dictionary Member ship

In Python 2.2 and later, the k in D operator tests to see whether object k isone of the keys of the dictionary D. It
returns Trueif itisand Faseif itisn't. Smilarly, the k notin D operator isjust like not (k in D).

4.7.2 Indexing a Dictionary

Thevaueinadictionary D that is currently associated with key k is denoted by an indexing: D[K]. Indexing with a

key that isnot present in the dictionary raises an exception. For example:
d={ '"x':42, 'y':3.14, 'z2':7 }

d[' x'] # 42
di'z'] # 7
d'a'] # rai ses exception

Pain assgnment to adictionary indexed with akey that isnot yet in thedictionary (e.g., D[newkey]=value) isavdid
operation that adds the key and value asanew item in the dictionary. For instance:

d={"x":42, 'y':3.14, 'z2':7 }

di'a'] = 16 #dis now{'x":42,'y':3.14,'z':7,"'a' : 16}

Thedd statement, intheform del D[K], removes from the dictionary theitem whosekey isk. If kisnot akey in
dictionary D, ddl D[K] raises an exception.

4.7.3 Dictionary Methods

Dictionary objects provide several methods, as shown in Table 4-4. Non-mutating methods return aresult without
atering the object to which they apply, while mutating methods may ater the object to which they apply. In Table 4-4
, D and D1 indicate any dictionary object, k any vdid key in D, and x any object.

Table 4-4. Dictionary object methods

M ethod Description

Non-mutating methods

D. copy() Returns a (shalow) copy of the dictionary

D. has_key(k) Returns Trueif k isakey in D, otherwise returns False

Rati irne acnnyv of the lia of Al iteame (lka/Aal e naire) 1n

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

4.8 The print Statement

A print statement is denoted by the keyword print followed by zero or more expressions separated by commas. print
isahandy, smpleway to output vauesin text form. print outputs each expresson x asadring that'sjust like the
result of caling sr(x) (covered in Chapter 8). print implicitly outputs a space between expressions, and it lso
implicitly outputs\n after the last expression, unlessthe last expresson isfollowed by atralling comma(,). Here are
some examples of print Satements:

letter = '¢'

print "give me a", letter, "..." # prints: give me ac ...
answer = 42

print "the answer is:", answer # prints: the answer is: 42

The degtination of print's output isthefile or file-like object that isthe value of the stdouit attribute of the sys module
(coveredin Chapter 8). Y ou can control output format more precisaly by performing string formatting yourself, with
the % operator or other string manipulation techniques, as covered in Chapter 9. Y ou can aso use thewrite or
writelines methods of file objects, as covered in Chapter 10. However, print isvery smpleto use, and Smplicity isan
important advantage in the common case where al you need are the smple output strategies that print supplies.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

4.9 Control Flow Statements

A program'’s control flow isthe order in which the program's code executes. The control flow of a Python program
isregulated by conditiona statements, loops, and function calls. This section coverstheif statement and for and while
loops, functions are covered later in this chapter. Raising and handling exceptions aso affects control flow;
exceptions are covered in Chapter 6.

4.9.1 Theif Statement

Often, you need to execute some statements only if some condition holds, or choose statements to execute
depending on severd mutualy exclusive conditions. The Python compound statement if, which usesif, dif, and else
clauses, lets you conditionally execute blocks of statements. Here's the syntax for the if statement:
i f expression:

st at enent (s)
elif expression:

st at enent (s)
elif expression:

st at enent (s)

el se expression:
st at enent (s)

The dif and ése clauses are optiond. Note that unlike some languages, Python does not have a switch statement, so
you must useif, dif, and esefor dl conditiona processng.

Herésatypicd if satement:

if x <0: print "X is negative"

elif x %2: print "x is positive and odd"
el se: print "x is even and non-negative"

When there are multiple statementsin a clause (i.e., the clause controls ablock of statements), the Satements are
placed on separate logica lines after the line containing the clause's keyword (known as the header line of the clause)
and indented rightward from the header line. The block terminates when the indentation returnsto that of the clause
header (or further Ieft from there). When thereisjust asingle smple statement, as here, it can follow the : on the same
logica line as the header, but it can aso be placed on a separate logicd line, immediately after the header lineand
indented rightward from it. Many Python practitioners consider the separate-line style more readable;

if x <0

print "x is negative"
elif x %2:

print "x is positive and odd"
el se:

print "x is even and non-negative"

Y ou can use any Python expression asthe condition in an if or dif clause. When you use an expression thisway, you
areusngitinaBoolean context. In aBoolean context, any valueis taken as either true or false. Aswe discussed
earlier, any non-zero number or non-empty string, tuple, list, or dictionary evaluates astrue. Zero (of any numeric
type), None, and empty strings, tuples, lists, and dictionaries evauate asfalse. When you want to test avaue x ina
Boolean context, use thefollowing coding style:

if X:

Thisisthe clearest and most Pythonic form. Don't use:
if X is True:

if X = = True

1 f bhAanl 7) -

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

4.10 Functions

Most statementsin atypica Python program are organized into functions. A function isagroup of statements that
executes upon request. Python provides many built-in functions and alows programmersto define their own
functions. A request to execute afunction isknown as a function call. When afunction is caled, it may be passed
arguments that specify data upon which the function performsits computation. In Python, afunction dwaysreturnsa
result value, either None or avaue that represents the results of its computation. Functions defined within class
statements are also called methods. Issues specific to methods are covered in Chapter 5; the generd coverage of
functionsin this section, however, aso gppliesto methods.

In Python, functions are objects (values) and are handled like other objects. Thus, you can passafunction asan
argument in acdl to another function. Similarly, afunction can return another function astheresult of acdl. A
function, just like any other object, can be bound to avariable, an item in acontainer, or an attribute of an object.
Functions can dso be keysinto adictionary. For example, if you need to quickly find afunction'sinverse given the
function, you could define adictionary whose keys and va ues are functions and then make the dictionary
bidirectiona (using some functions from module math, covered in Chapter 15):

i nverse = {sin:asin, cos:acos, tan:atan, |og:exp}
for f in inverse.keys(): inverse[inverse[f]] =f

The fact that functions are objectsin Python is often expressed by saying that functions are first-class objects.

4.10.1 The def Statement

The def statement isthe most common way to define afunction. def isa single-clause compound statement with the
following syntax:
def function-name(paraneters):

st at enent (s)

function-name isan identifier. It isavariable that gets bound (or rebound) to the function object when def executes.

parameters isan optiond list of identifiers, called formal parameters or just parameters, that are used to represent
vauesthat are supplied as arguments when the function is called. In the smplest case, afunction doesn't have any
forma parameters, which means the function doesn't take any argumentswhen it iscalled. Inthis case, the function
definition has empty parentheses following function-name.

When afunction does take arguments, parameters contains one or more identifiers, separated by commas (,). Inthis
case, each cdl to the function supplies vaues, known as arguments, that correspond to the parameters specified in
the function definition. The parameters arelocal variables of the function, aswelll discusslater in this section, and
each call to the function binds these local variablesto the corresponding vaues that the caller supplies as arguments.

The non-empty sequence of statements, known as the function body, does not execute when the def statement
executes. Rather, the function body executes|ater, each time the function is called. The function body can contain
Zero or more occurrences of the return statement, aswell discuss shortly.

Here's an example of asmple function that returns avauethat is double the value passed to it:
def doubl e(x):
return x*2

4.10.2 Parameters

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 5. Object-Oriented Python

Python is an object-oriented programming language. Unlike some other object-oriented languages, Python doesn't
force you to use the object-oriented paradigm exclusively. Python aso supports procedura programming with
modules and functions, so you can select the most suitable programming paradigm for each part of your program.
Generdlly, the object-oriented paradigm is suitable when you want to group state (data) and behavior (code) together
in handy packets of functionality. It's also ussful when you want to use some of Python's object-oriented mechanisms
covered in this chapter, such asinheritance or specid methods. The procedura paradigm, based on modules and
functions, tendsto be smpler and is more suitable when you don't need any of the benefits of object-oriented
programming. With Python, you often mix and maich the two paradigms.

Python 2.2 and 2.3 arein trangition between two dightly different object modes. This chapter starts by describing the
classic object modd, which wasthe only one availablein Python 2.1 and earlier and is till the default model in
Python 2.2 and 2.3. The chapter then coversthe smdll differencesthat define the powerful new-style object mode
and discusses how to use the new-style object model with Python 2.2 and 2.3. Because the new-style object model
builds on the classic one, you'll need to understand the classic model before you can learn about the new mode!.
Findly, the chapter covers special methods for both the classic and new-style object models, aswell as metaclasses
for Python 2.2 and later.

The new-style object mode will become the default in afuture version of Python. Even though the classic object
mode is il the default, | suggest you use the new-style object model when programming with Python 2.2 and later.
Its advantages over the classic object modd, while small, are measurable, and there are practically no compensating
disadvantages. Therefore, it'ssmpler just to stick to the new-style object model, rather than try to decide which
model to use each time you code anew class.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

5.1 Classic Classes and | nstances

A classic dassisaPython object with severd characteritics:

You can call aclassobject asif it were afunction. The cal creates another object, known as an instance of
the class, that knowswhat classit belongsto.

A classhas arbitrarily named attributes that you can bind and reference.

The values of class attributes can be data objects or function objects.

Class attributes bound to functions are known as methods of the class.

A method can have aspecid Python-defined name with two leading and two trailing underscores. Python
invokes such special methods, if they are present, when various kinds of operations take place on class
instances.

A classcan inherit from other classes, meaning it can delegate to other class objects the lookup of attributes
that are not found in the classitself.

Aningance of aclassisaPython object with arbitrarily named attributes that you can bind and reference. An
instance object implicitly delegatesto its class the lookup of attributes not found in theingtanceitsalf. Thedlass, in
turn, may delegate the lookup to the classes from which it inherits, if any.

In Python, classes are objects (vaues), and are handled like other objects. Thus, you can pass a class as an argument
inacdl toafunction. Smilarly, afunction can return aclassastheresult of acal. A class, just like any other object,
can be bound to avariable (local or global), an item in acontainer, or an attribute of an object. Classes can adso be
keysinto adictionary. Thefact that classes are objectsin Python is often expressed by saying that classesare
first-class objects.

5.1.1 The class Statement

The class statement is the most common waly to create a class object. classis asingle-clause compound statement
with thefollowing syntax:
cl ass cl assname[(base-cl asses)]:

st at enent (s)

classname isan identifier. It isavariable that gets bound (or rebound) to the class object after the class statement
finishes executing.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

5.2 New-Style Classes and | nstances

Most of what | have covered so far in this chapter so holds for the new-style object mode introduced in Python
2.2. New-style classes and instances are first-class objects just like classic ones, both can have arbitrary attributes,
you call aclassto create an instance of the class, and so on. In this section, I'm going to cover the few differences
between the new-style and classic object models.

In Python 2.2 and 2.3, aclassis new-styleif it inherits from built-in type object directly or indirectly (i.e, if it
subclasses any built-in type, such asligt, dict, file, object, and so on). In Python 2.1 and earlier, aclass cannot inherit
from abuilt-in type, and built-in type object does not exist. In Section 5.4 later in this chapter, | cover other waysto
make a class new-style, ways that you can usein Python 2.2 or |ater whether a class has superclasses or not.

As| sad at the beginning of this chapter, | suggest you get into the habit of using new-style classes when you
program in Python 2.2 or later. The new-style object modd has small but measurable advantages, and there are
practically no compensating disadvantages. It's smpler just to stick to the new-style object model, rather than try to
decide which model to use each time you code anew class.

5.2.1 The Built-in object Type

Asof Python 2.2, the built-in object type is the ancestor of al built-in types and new-style classes. The object type
defines some specia methods (as documented in Section 5.3 later in this chapter) that implement the default
semantics of objects.

__new__,__init__

Y ou can create adirect instance of object, and such creation implicitly usesthe static method __new__ of type
object to create the new instance, and then usesthe new ingance's__init__ method to initidize the new ingtance.
object. _init__ignoresits arguments and performs no operation whatsoever, so you can pass arbitrary arguments
to type object when you cal it to create an ingtance of it: al such argumentswill beignored.

__ddattr__, geattribute , setattr

By default, an object handles attribute references as covered earlier in this chapter, using these methods of object.
__hash , repr , _sr

An object can be passed to functions hash and repr and to type str.

A subclass of object may override any of these methods and/or add others.

5.2.2 Class-Level Methods

The new-style object model alowstwo kinds of class-level methods that do not exist in the classic object mode!:
satic methods and class methods. Class-level methods exist only in Python 2.2 and later, but in these versionsyou
can adso have such methodsin classic classes. Thisisthe only feature of the new-style object model that isalso fully
functiona with classc classesin Python 2.2 and | ater.

5.2.2.1 Static methods

A static method isamethod that you can cal on aclass, or on any instance of the class, without the specid behavior

and condgral nte of ordinans maethode bor nd and 1 inbhor nAd on the firak arciimaent A otatiec mathod mavy have anyy

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

5.3 Special Methods

A classmay define or inherit specia methods (i.e., methods whose names begin and end with double underscores).
Each specid method relates to a specific operation. Python implicitly invokes a specid method whenever you
perform the rel ated operation on an instance object. In most cases, the method's return value is the operation's result,
and atempting an operation when its related method is not present raises an exception. Throughout this section, | will
point out the cases in which these generd rules do not apply. In thefollowing, x isthe instance of class C onwhich
you perform the operation, and y isthe other operand, if any. Theforma argument salf of each method dso refersto
instance object x.

5.3.1 General-Pur pose Special M ethods

Some special methods relate to generd-purpose operations. A classthat defines or inherits these methods allows its
instances to control such operations. These operations can be divided into the following categories:
Initialization and finalization

An instance can contral itsinitidization (afrequent need) viagpecid method __init__, and/or itsfindization (arare
need) via_ _dd_ .
Representation as string

An instance can control how Python representsit asastring viaspecid methods _ _repr. , dr ,and
_unicode__.

Comparison, hashing, and use in a Boolean context
An instance can control how it compares with other objects (methods_ It _and__cmp_), how dictionariesuse
itasakey (__hash_), and whether it evaluatesto true or false in Boolean contexts (__nonzero).

Attribute reference, binding, and unbinding
An instance can control accessto its attributes (reference, binding, unbinding) by defining special methods
_Qetattribute , _getattr , setattr ,and __delattr .

Callable instances

Aninganceiscadlable, just like afunction object, if it hasthe specid method __call_ .

Therest of this section documents the generd-purpose specia methods.

call

_ _call_ _(self[,args...])

Whenyou cdl x([args...]), Python trandatesthe operationintoacal tox.__call__([args...]). Theformd
argumentsfor the cal operation arethe same asforthe _cal method, minusthe first argument. Thefirgt
argument, conventionaly caled sdif, refersto x, and Python suppliesit implicitly and automatically, just asin any
other cal to abound method.

__Cmp__
__cnp_ _(self, other)

Anv comparison, whenitspecificspeciad method(It . ot . etc) isabsent or returns Notl mplemented,

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

5.4 M etaclasses

Any object, even a class object, has atype. In Python, types and classes are dso first-class objects. Thetype of a
class object isaso known asthe classs metaclass.[1] An object's behavior is determined largely by the type of the
object. Thisaso holdsfor classes: aclasss behavior is determined largely by the classs metaclass. Metaclasses are
an advanced subject, and you may want to skip the rest of this chapter on first reading. However, fully grasping
metaclasses can help you obtain adeeper understanding of Python, and sometimesit can even be useful to define
your own custom metaclasses.

[1] Strictly speaking, the type of aclass C could be said to be the metaclass only of instances of C, rather than of C
itself, but this exceedingly subtle terminologica digtinctionisrarely, if ever, observed in practice.

The distinction between classic and new-style classesrelies on the fact that each class's behavior isdetermined by its
metaclass. In other words, the reason classic classes behave differently from new-style classesisthat classic and
new-style classes are object of different types (metaclasses):

class O assic: pass

cl ass Newstyl e(object): pass

print type(d assic) # prints: <type 'class'>
print type(Newstyle) # prints: <type 'type'>

Thetype of Classcisobject types.ClassType from standard module types, while the type of Newstyleis built-in
object type. typeis adso the metaclass of al Python built-in types, including itself (i.e., print type(type) dso prints
<type type’>).

5.4.1 How Python Determines a Class's M etaclass

To execute a class statement, Python first collects the base classesinto atuple t (an empty one, if there are no base
classes) and executes the class body in atemporary dictionary d. Then, Python determines the metaclass M to use
for the new class object C created by the class statement.

When' metaclass ‘isakeyind, Misd['__metaclass _"]. Thus, you can explicitly control class C's metaclass
by binding the attribute __metaclass _ in C's class body. Otherwise, when t is non-empty (i.e., when C hasone or
more base classes), M istype(t[0]), the metaclass of C'sfirgt base class. Thisiswhy inheriting from object indicates
that C isanew-style class. Since type(object) istype, aclass C that inherits from object (or some other built-in type)
gets the same metaclass as object (i.e., type(C), C's metaclass, isaso type) Thus, being anew-styleclassis
synonymous with having type as the metaclass.

When C has no base classes, but the current module hasagloba variablenamed __metaclass _, M isthevaue of
that global variable. Thislets you make classes without base classes default to new-style classes, rather than classic
classes, throughout amodule. Just place the following statement toward the start of the module body:

_ _metaclass_ = type

Failing dl of these, in Python 2.2 and 2.3, M defaultsto types.ClassType. Thislast default of defaults clauseiswhy
classes without base classes are classic classes by default, when ~_metaclass isnot bound in the classbody or as
aglobd variable of the module.

5.4.2 How a Metaclass Creates a Class

Having determined M, Python cals M with three arguments: the class name (a string), the tuple of base classes t, and

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 6. Exceptions

Python uses exceptions to communicate errors and anomalies. An exception is an object that indicates an error or
anomalous condition. When Python detects an error, it raises an exception; that is, it Signasthe occurrence of an
anomal ous condition by passing an exception object to the exception-propagation mechanism. Y our code can aso
explicitly raise an exception by executing araise satement.

Handling an exception means receiving the exception object from the propagation mechanism and performing
whatever actions are needed to dedl with the anomalous situation. If a program does not handle an exception, it
terminates with an error traceback message. However, a program can handle exceptions and keep running despite
errorsor other abnormal conditions.

Python aso uses exceptions to indicate some specia Stuationsthat are not errors, and are not even abnormal
occurrences. For example, as covered in Chapter 4, an iterator's next method rai ses the exception Stoplteration
when the iterator has no moreitems. Thisisnot an error, and it is not even an anomalous condition, Snce most
iterators run out of items eventualy.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

6.1 Thetry Statement

The try statement provides Python's exception-handling mechanism. It is a compound statement that can take one of
two different forms:

A try clausefollowed by one or more except clauses

A try dlausefollowed by exactly onefindly clause
6.1.1 try/except

Herésthe syntax for the try/except form of the try statement:

try:
statenent (s)

except [expression [, target]]:
st at enent (s)

[el se:
st at enment (s)]

Thisform of the try statement has one or more except clauses, aswell asan optional ese clause.

The body of each except clauseis known as an exception handler. The code executesif the expression inthe
except clause matches an exception object that propagates from the try clause. expression isan optiona classor
tuple of classes that matches any exception object of one of the listed classes or any of their subclasses. The optional
target isan identifier that names avariable that Python binds to the exception object just before the exception
handler executes. A handler can also obtain the current exception object by caling the exc_info function of module

sys(covered in Chapter 8).

Hereis an example of the try/except form of the try statement:
try: 1/0
except ZeroDivisionError: print "caught divide-by-0 attenpt”

If atry statement has severa except clauses, the exception propagation mechanism tests the except clausesin order:
thefirst except clause whose expression matches the exception object is used asthe handler. Thus, you must always
list handlersfor specific cases before you list handlers for more generd cases. If you list agenera casefirgt, the more
specific except clausesthat follow will never enter the picture.

Thelast except clause may lack an expression. This clause handles any exception that reaches it during propagation.
Such unconditiona handling isarare need, but it does occur, generdly in wrapper functionsthat must perform some
extratask before reraising an exception, aswelll discusslater in the chapter.

Note that exception propagation terminates when it finds a handler whose expression matches the exception object.
Thus, if atry statement is nested in the try clause of another try statement, ahandler established by theinner try is
reached firgt during propagetion, and therefore is the one that handles the exception, if it matches the expression. For

PR

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

6.2 Exception Propagation

When an exception israised, the exception-propagation mechanism takes control. The norma control flow of the
program stops, and Python looks for a suitable exception handler. Python's try statement establishes exception
handlers viaits except clauses. The handlers dedl with exceptionsraised in the body of the try clause, aswell as
exceptions that propagate from any of the functions called by that code, directly or indirectly. If an exception israised
within atry clause that has an applicable except handler, the try clause terminates and the handler executes. When the
handler finishes, execution continues with the statement after the try statement.

If the Statement raising the exception is not within atry clause that has an gpplicable handler, the function containing
the statement terminates, and the exception propagates upward to the statement that called the function. If the call to
the terminated function iswithin atry clause that has an applicable handler, that try clause terminates, and the handler
executes. Otherwise, the function containing the call terminates, and the propagation process repeets, unwinding the
stack of function callsuntil an gpplicable handler isfound.

If Python cannot find such ahandler, by default the program prints an error message to the standard error stream (the
file sysstderr). The error message includes atraceback that gives details about functions terminated during
propagation. Y ou can change Python's default error-reporting behavior by setting sys.excepthook (covered in
Chapter 8). After error reporting, Python goes back to the interactive sesson, if any, or terminatesif no interactive
sessonisactive. When the exception classis SystemExit, termination is sllent and includes the interactive session, if

ay.

Here are some functions that we can use to see exception propagation at work.

def f():
print "in f, before 1/0"
1/0 # raises a ZeroDivisionError exception
print "in f, after 1/0"

def g():
print "in g, before f()"

fC)
print "in g, after f()"

def h():
print "in h, before g()"
try:

9()
print "in h, after g()"

except ZeroDivisionError:
print "ZD exception caught"”

print "function h ends"

Cdling the h function has the following results:

>>> h()

in h, before g()
in g, before f()
inf, before 1/0
ZD exception caught

function h ends

Function h establishes atry statement and cals function g within the try clause. g, inturn, calsf, which performsa
divison by 0, raising an exception of class ZeroDivisionError. The exception propagates dl the way back to the
except clausein h. Functionsf and g terminate during the exception propagation phase, which iswhy neither of their
"after" messagesis printed. The execution of h'stry clause also terminates during the exception propagetion phase, so

LI | [o R | R AL S [N P o AR i T-IN «f RSP § PR Py | [N N JE [N RN P U SR SRy T iy Ry

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

6.3 Theraise Statement

Y ou can use the raise statement to raise an exception explicitly. raiseis asmple statement with the following syntax:
rai se [expressionl[, expression2]]

Only an exception handler (or afunction that ahandler cdlls, directly or indirectly) can use raise without any
expressions. A plain raise stlatement rerai ses the same exception object that the handler received. The handler
terminates, and the exception propagation mechanism keeps searching for other applicable handlers. Usng araise
without expressionsis useful when ahandler discoversthat it is unable to handle an exception it receives, sothe

exception should keep propagating.

When only expressionl is present, it can be an instance object or aclass object. Inthiscase, if expressionl isan
instance object, Python raises that instance. When expressionl isaclass object, raise instantiates the class without
arguments and rai ses the resulting instance. When both expressions are present, expressionl must be a class object.
raseingdantiates the class, with expression2 asthe argument (or multiple argumentsif expression2 isatuple), and
raisesthe resulting ingtance.

Heré's an example of atypicd use of the raise statement:

def crossProduct(seql, seqg2):
if not seql or not seq2:
rai se Val ueError, "Sequence argunents must be non-enpty”

return [(x1, x2) for x1 in seql for x2 in seq2]

The crossProduct function returnsalist of al pairs with oneitem from each of its sequence arguments, but firgt it tests
both arguments. If either argument is empty, the function raises VVa uekrror, rather than just returning an empty list as
thelist comprehension would normally do. Note that thereis no need for crossProduct to test if seql and seg2 are
iterable: if either isn't, the list comprehension itself will raise the appropriate exception, presumably a TypeError.
Once an exception israised, beit by Python itsdf or with an explicit raise statement in your code, it's up to the caler
to ether handleit (with asuitable try/except statement) or let it propagate further up the cal stack.

Use the raise statement only to raise additional exceptionsfor cases that would normally be okay but your
specifications define to be errors. Do not use raise to duplicate the error checking and diagnostics Python aready
and implicitly does on your behaf.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

6.4 Exception Objects

Exceptions areinstances of subclasses of the built-in Exception class. For backward compatibility, Python aso lets
you use strings, or instances of any class, as exception objects, but such usage risks future incompatibility and gives
no benefits. An ingtance of any subclass of Exception has an attribute args, the tuple of arguments used to create the
Instance. args holds error-specific information, usable for diagnostic or recovery purposes.

6.4.1 The Hierarchy of Standard Exceptions

All exceptionsthat Python itself raises are instances of subclasses of Exception. The inheritance structure of exception
classesisimportant, asit determines which except clauses handle which exceptions.

The SystemExit classinherits directly from Exception. Instances of SystemExit are normally raised by the exit function
in module sys (covered in Chapter 8).

Other standard exceptions derive from StandardError, adirect subclass of Exception. Three subclasses of
StandardError, like StandardError itself and Exception, are never ingtantiated directly. Their purposeisto makeit
easer for you to specify except clauses that handle abroad range of related errors. These subclasses are:
ArithmeticError

The base class for exceptions due to arithmetic errors (i.e., OverflowError, ZeroDivisionError, FoatingPointError)
L ookupError

The base class for exceptionsthat a container raises when it receives an invalid key or index (i.e., IndexError,
KeyError)
EnvironmentError

The base class for exceptions due to externa causes (i.e., IOError, OSError, WindowsError)

6.4.2 Standard Exception Classes

Common runtime errors raise exceptions of thefollowing classes:
AssertionError

An assart satement failed.
AttributeError

An dtribute reference or assgnment failed.
FloatingPointError

A floating-point operation failed. Derived from ArithmeticError.
|OError

An /O operationfaled (e.g., the disk isfull, afile was not found, or needed permissions were missing). Derived from
EnvironmentError.
ImportError

An import statement (covered in Chapter 7) cannot find the module to import or cannot find aname specifically
requested from the module.
I ndentationError

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

6.5 Custom Exception Classes

Y ou can subclass any of the standard exception classesin order to define your own exception class. Typicaly, such a
subclass adds nothing more than a docstring:
class InvalidAttribute(AttributeError):

"Used to indicate attributes that could never be valid"

Given the semantics of try/except, ralsing acustom exception class such as InvdidAttributeisdmost the same as
raising its standard exception superclass, AttributeError. Any except clause able to handle AttributeError can handle
InvalidAttribute just aswell. In addition, client code that knows specifically about your InvaidAttribute custom
exception class can handle it specifically, without having to handle dl other cases of AttributeError if it isnot prepared
for those. For example:

cl ass SomeFunkyd ass(object):
"much hypot hetical functionality snipped"
def _ _getattr_ (self, nane):
"this _ _getattr_ _ only clarifies the kind of attribute error”
if nane.startswith('_'):
rai se InvalidAttribute, "Unknown private attribute "+nane
el se:

raise Attri buteError, "Unknown attribute "+nane

Now client code can be more sdlectivein its handlers. For example:
s = SoneFunkyd ass()
try:
val ue = getattr(s, thenane)
except InvalidAttribute, err
war ni ngs.warn(str(err))
val ue = None

other cases of AttributeError just propagate, as they're unexpected

A specid case of custom exception class that you may sometimes find useful is one that wraps another exception and
adds further information. To gather information about a pending exception, you can usethe exc_info function from
module sys (covered in Chapter 8). Given this, your custom exception class could be defined asfollows:
i mport sys
crgss CUZtonException(Exception):
"Wap arbitrary pending exception, if any, in addition to other info"
def _ _init_ (self, *args):
Exception._ _init_ _(self, *args)
sel f.wapped_exc = sys.exc_info()

Y ou would then typically usethis classin awrapper function such as.

def call_wapped(callable, *args, **kwds):
try: return call able(*args, **kwds)

except: raise CustonmException, "Wapped function propagated exception”

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

6.6 Error-Checking Strategies

Most programming languages that support exceptions are geared to raise exceptions only in very rare cases. Python's
emphasisisdifferent. In Python, exceptions are considered appropriate whenever they make a program smpler and
more robust. A common idiom in other languages, sometimes known as "look before you legp” (LBYL), isto check
in advance, before attempting an operation, for al circumstances that might make the operation invaid. Thisis not
idedl, for severd reasons:

The checks may diminish the readability and clarity of the common, mainstream cases where everything is
okay.

The work needed for checking may duplicate a substantia part of the work donein the operation itsdlf.

The programmer might easily err by omitting some needed check.

The situation might change between the moment the checks are performed and the moment the operation is
atempted.

The preferred idiom in Python is generdly to attempt the operation in atry clause and handle the exceptionsthat may
result in except clauses. Thisidiom isknown as"it's easier to ask forgiveness than permission” (EAFP), amotto
widely credited to Admird Grace Murray Hopper, co-inventor of COBOL, and shares none of the defects of "look
beforeyou legp." Hereisafunction written usngthe LBYL idiom:
def safe divide 1(x, y):
if y= =0:
print "Divide-by-0 attenpt detected"
return None
el se:

return x/y

With LBY L, the checks comefirst, and the mainstream case is somewhat hidden at the end of the function.

Hereisthe equivaent function written using the EAFP idiom:
def safe_divide_2(x, y):
try:
return x/y
except ZeroDivisionError:
print "Divide-by-0 attenpt detected"

return None

With EAFP, the mainstream caseis up front in atry clause, and the anomalies are handled in an except clause.

EAFPismost often the preferable error-handling strategy, but it is not a panacea. In particular, you must be careful
not to cast too wide a net, catching errorsthat you did not expect and therefore did not mean to catch. The following
isatypica case of such arisk (built-in function getattr is covered in Chapter 8):

def trycalling(obj, attrib, default, *args, **kwds):

trv: retiirn aet attr(ohi aAattri hY(*arae **lewrde)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 7. Modules

A typical Python program is made up of severa sourcefiles. Each source file corresponds to a module, which
packages program code and data for reuse. Modules are normally independent of each other so that other programs
can reuse the specific modules they need. A module explicitly establishes dependencies upon another module by
using import or from statements. In some other programming languages, globa variables can provide ahidden
conduit for coupling between modules. In Python, however, globa variables are not global to al modules, but instead
such variables are attributes of asingle module object. Thus, Python modules communicatein explicit and

maintainable ways.

Python aso supports extensions, which are components written in other languages, such as C, C++, or Java, for use
with Python. Extensions are seen as modules by the Python code that uses them (called client code). From the client
code viewpoint, it does not matter whether amodule is 100% pure Python or an extension. Y ou can dways start by
coding amodulein Python. Later, if you need better performance, you can recode some modulesin alower-level
language without changing the client code that uses the modules. Chapter 24 and Chapter 25 discusswriting
extensonsin C and Java

This chapter discusses module creation and loading. It dso covers grouping modulesinto packages, which are
modulesthat contain other modules, forming ahierarchical, tree-like structure. Findly, the chapter discussesusing
Python's digtribution utilities (distutils) to prepare packages and modules for distribution and to ingtall distributed
packages and modules.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

7.1 Module Objects

A module isaPython object with arbitrarily named attributes that you can bind and reference. The Python code for a
module named aname normally resdesin afile named aname.py, as covered in Section 7.2 later in this chapter.

In Python, modules are objects (values) and are handled like other objects. Thus, you can passamodule asan
argument inacdl to afunction. Smilarly, afunction can return amodule asthe result of acdl. A module, just like any
other object, can be bound to avariable, an item in acontainer, or an attribute of an object. For example, the
sys.modules dictionary, covered later in this chapter, holds module objects asits values.

7.1.1 Theimport Statement

Y ou can use any Python source file as amodule by executing an import statement in some other code. import hasthe
fallowing syntax:

i nport nodnane [as varnane][,...]

The import keyword isfollowed by one or more module specifiers, separated by commeas. In the smplest and most
common case, modname is an identifier, the name of avariable that Python binds to the module object when the
import statement finishes. In this case, Python looks for the module of the same name to satisfy the import request.
For example:

i mport MyModul e

looks for the module named MyM odule and binds the variable named MyModule in the current scope to the module
object. modname can a so be a sequence of identifiers separated by dots (.) that names amodulein a package, as
covered in later in this chapter.

When as varname is part of an import statement, Python binds the variable named var name to the module object,
but the module name that Python looks for is modname. For example:
i nport MyModul e as Alias

looks for the module named MyModule and binds the variable named Aliasin the current scope to the module
object. varname isdwaysasmpleidentifier.

7.1.1.1 Module body

The body of amodule isthe sequence of statementsin the modul€e's sourcefile. Thereis no specid syntax required to
indicate that a source fileisamodule; any valid source file can be used asamodule. A modul€e's body executes
immediately thefirgt time the moduleisimported in agiven run of aprogram. During execution of the body, the
module object dready exists and an entry in sysmodulesis aready bound to the module object.

7.1.1.2 Attributes of module objects

Animport statement creates anew namespace that contains al the attributes of the module. To access an attributein
this namespace, use the name of the module object as a prefix:

i mport MyModul e

a = MyModule. f()

or
i nport MyMbdul e as Ali as

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

7.2 Module Loading

Module-loading operations rely on attributes of the built-in sys module (covered in Chapter 8). The module-loading
process described hereis carried out by built-infunction __import__. Your codecancal __import__ directly,
with the module name string asan argument. __import___ returns the modul e object or raises ImportError if the
import falls.

Toimportamodulenamed M, __import__ first checksdictionary sys.modules, using string M asthe key. When
key Misinthedictionary, __import__ returnsthe corresponding value as the requested module object. Otherwise,
__import__binds sysmoduled M] to anew empty module object witha___name__ of M, then looksfor theright
way to initidize (load) the module, as covered in Section 7.2.2 later in this section.

Thanksto this mechanism, the loading operation takes place only the first time amodule isimported in agiven run of
the program. When amodule isimported again, the module is not reloaded, since__import__ finds and returnsthe
module€'s entry in sysmodules. Thus, dl imports of amodule after thefirst one are extremdly fast because they're just
dictionary lookups.

7.2.1 Built-in Modules

Whenamoduleisloaded, __import__ first checks whether the moduleis built-in. Built-in modules are listed in tuple
sys.builtin_module_names, but rebinding that tuple does not affect moduleloading. A built-in module, like any other
Python extension, isinitidized by caling the modul€sinitidization function. The search for built-in modules o finds
frozen modules and modulesin platform-specific locations (e.g., resources on the Mac, the Registry in Windows).

7.2.2 Searching the Filesystem for a Module

If module M isnot built-in or frozen, __import__ looksfor M's code as afile on thefilesystem. __import__ looks
in the directorieswhose names arethe items of list syspath, in order. syspathisinitialized at program startup, using
environment variable PY THONPATH (covered in Chapter 3) if present. Thefirst itemin syspathisawaysthe
directory from which the main program (script) isloaded. An empty string in sys.path indicates the current directory.

Y our code can mutate or rebind sys.path, and such changes affect what directories__import __ searchesto load
modules. Changing sys.path does not affect modulesthat are dready loaded (and thus aready listed in sysmodules)
when sys.path is changed.

If atext filewith extenson .pth isfound in the PY THONHOME directory at startup, its contents are added to
sys.path, oneitem per line. .pth files can dso contain blank lines and comment lines sarting with the character #, as
Python ignores any such lines. .pth files can aso contain import statements, which Python executes, but no other
kinds of statements.

When looking for thefile for module M in each directory aong sys.path, Python considers the following extensonsin
the order listed:
1.

.pyd and .dll (Windows) or .o (most Unix-like platforms), which indicate Python extenson modules. (Some
Unix didects use different extensons, eg., .4 isthe extenson used on HP-UX.)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

7.3 Packages

A package isamodule that contains other modules. Modulesin a package may be subpackages, resulting in a
hierarchica tree-like Sructure. A package named P residesin asubdirectory, aso caled P, of somedirectory in
syspath. The module body of Pisinthefile P/ _init__.py. Youmust haveafilenamed P/__init__.py, evenifit's
empty (representing an empty module body), in order to indicate to Python that directory P isindeed a package.
Other .py filesindirectory P are the modules of package P. Subdirectoriesof P containing __init__.py filesare
subpackages of P. Nesting can continue to any depth.

Y ou can import amodule named M in package P as P.M. More dots et you navigate a hierarchica package
sructure. A package is dways |loaded before amodule in the packageis |oaded. If you use the syntax import P.M,
variadle P is bound to the module object of package P, and attribute M of object P isbound to module P.M. If you
use the syntax import P.M as V, variable V isbound directly to module P.M.

Using from P import M to import aspecific module M from package P isfully acceptable programming practice. In
other words, the from statement is specifically okay in this case,

A module M in apackage P can import any other module X of P with the statement import X. Python searchesthe
modul€e's own package directory before searching the directoriesin sys.path. However, this gpplies only to sibling
modules, not to ancestors or other more-complicated relationships. The smplest, cleanest way to share objects (such
asfunctions or congtants) among modulesin apackage P isto group the shared objectsin afile named
P/Common.py. Then you can import Common from every module in the package that needs to access the objects,
and then refer to the objects as Common.f, Common.K, and so on.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

7.4 The Distribution Utilities (distutils)

Python modules, extensions, and applications can be packaged and distributed in severd forms:
Compressed archivefiles

Genedly .zip for Windows and .tar.gz or .tgz for Unix-based systems, but both forms are portable
Sdf-unpacking or self-ingaling executables

Normadly .exe for Windows
Platform-specific inddlers

For example, .msi on Windows, .rpm and .srpm on Linux, and .deb on Debian GNU/Linux

When you distribute a package as a self-ingtaling executable or platform-specific ingdler, auser can theningal the
package smply by running the ingaler. How to run such an ingaler program depends on the platform, but it no
longer matters what language the program was written in.

When you digtribute a package as an archivefile or as an executable that unpacks but does not ingtd| itsdlf, it does
matter that the package was coded in Python. In this case, the user must first unpack the archive file into some
appropriate directory, say C:\Temp\MyPack on aWindows machine or ~/MyPack on aUnix-like machine. Among
the extracted files there should be a script, conventionally named setup.py, that uses the Python facility known asthe
distribution utilities (package distutils). The distributed packageisthen dmost as easy to insall asa sdf-ingtaling
executable would be. The user opens a command-prompt window and changes to the directory into which the
archiveisunpacked. Then the user runs, for example:

C:\ Tenp\ MyPack> python setup.py install

The setup.py script, run with thisinstal command, ingtals the package as apart of the user's Python ingallation,
according to the options specified in the setup script by the package's author. distutils, by default, providestracing
information when the user runs setup.py. Option --quiet, placed right before the install command, hides most details
(the user dtill seeserror messages, if any). The following command:

C \> python setup.py --help

giveshdp on didutils.

When you areingtaling a package prepared with distutils, you can, if you wish, exert detailed control over how
digtutils performsingalations. Y ou can record ingtalation optionsin atext filewith extenson .cfg, caled aconfig file,
so that distutils applies your favorite ingtallation options by default. Such customization can be done on asystemwide
bass, for asingle user, or even for asingle package ingalation. For example, if you want an ingtdlation with minimal
amounts of output to be your systemwide default, create the following text file named pydistutils.cfg:

[gl obal]
qui et =1

Pacethisfilein the same directory in which the distutils package resdes. On atypica Python 2.2 ingtalation on
Windows, for example, thefileis C:\Python22\Lib\distutils\pydistutils.cfg. Chapter 26 provides moreinformation
on uging distutilsto prepare Python modules, packages, extensions, and applicationsfor distribution.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] i
Chapter 8. Core Built-ins

The term built-in has more than one meaning in Python. In most contexts, abuilt-inisany object directly accessbleto
aPython program without an import statement. Chapter 7 showed the mechanism that Python usesto alow this
direct access. Built-in typesin Python include numbers, sequences, dictionaries, functions (covered in Chapter 4),
classes (covered in Chapter 5), the standard exception classes (covered in Chapter 6), and modules (covered in
Chapter 7). The built-in file object is covered in Chapter 10, and other built-in types covered in Chapter 13 are
intringc to Python'sinternal operation. This chapter provides additiona coverage of the core built-in types, and it dso
coversthe built-in functionsavalaolein module __builtin__.

As| mentioned in Chapter 7, some modules are called built-in because they are an integral part of the Python
standard library, even though it takes an import statement to access them. Built-in modules are distinct from separate,
optional add-on modules, aso called Python extensions. This chapter documents the following core built-in modules:
Sys, getopt, copy, bisect, UserList, UserDict, and UserString. Chapter 9 covers some string-related core built-in
modules, while Parts 111 and IV of the book cover many other useful built-in modules.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot
8.1 Built-in Types

This section documents Python's core built-in types, likeint, float, and dict. Note that prior to Python 2.2, these
names referred to factory functionsfor creating objects of these types. As of Python 2.2, however, they refer to
actual type objects. Since you can cdl type objectsjust asif they were functions, this change does not break existing
programs.

classmethod Python 2.2 and later
cl assmet hod(functi on)

Creates and returns a class method object. In practice, you cal this built-in type only within aclass body. See Section
5.2.2.2.

complex
conpl ex(real , i nag=0)

Converts any number, or a suitable string, to acomplex number. imag may be present only when real isanumber,
andistheimaginary part of the resulting complex number.

dict Python 2.2 and later
dict(x={ 1})

Returns anew dictionary object with the sameitems as argument x. When x isadictionary, dict(x) returns a copy of
X, like x.copy() does. Alternatively, x can be a sequence of pairs, that is, a sequence whose items are sequences
with two items each. In this case, dict(x) returns adictionary whose keys are the first items of each pair in x, while
the corresponding values are the corresponding second items. In other words, when X is a sequence, c=dict(x) has
the same effect asthe following:

c={ }
for key, value in x: c[key] = value
file, open

file(path, node="r', bufsize=-1)
open(fil enanme, node='r', bufsi ze
=-]_)

Opensor creates afile and returnsanew file object. In Python 2.2 and later, open isasynonym for the built-in type
file. In Python 2.1 and earlier, open was a built-in function and file was not abuilt-in name at dl. See Section 10.3.

float
fl oat (X)
Converts any number, or asuitable string, to afloating-point number.

int

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

8.2 Built-in Functions

This section documents the Python functions availablein module __builtin__in dphabetical order. Note thet the
names of these built-ins are not reserved words. Thus, your program can bind for its own purposes, in local or global
scope, an identifier that has the same name as a built-in function. Names bound in local or globa scope have priority
over names bound in built-in scope, so loca and globa names hide built-in ones. Y ou can aso rebind namesin
built-in scope, as covered in Chapter 7. Y ou should avoid hiding built-insthat your code might need.

___import_

_ _inport_ _(nodul e_nane[,
gl obal s[, local s[,fromist]]])

L oads the module named by string module_name and returns the resulting module object. globals, which defaultsto
theresult of globaly(), and locals, which defaults to the result of local() (both covered in this section), are
dictionariesthat __import__ treats as read-only and uses only to get context for package-relative imports, covered
in Section 7.3. fromlist defaultsto an empty list, but can bealist of strings that name the modul e attributes to be
imported in afrom statement. See Section 7.2 for more details on module loading.

In practice, whenyou cal __import__, you generaly pass only thefirst argument, except in the rare and dubious
caseinwhichyouuse __import__ for a package-relative import. When you replace the built-in__import_
function with your own in order to provide specia import functionaity, you may have to take globals, locals, and
fromlist into account.

abs
abs(X)

Returns the absolute vaue of number x. When x is complex, abs returns the square root of x.imag** 2+x.rea** 2.
Otherwise, absreturns-x if x islessthan O, or x if X isgreater than or equal t0 0. Seedso ~ abs in Chapter 5.

apply

appl y(func,args=(), keywords=(
1)

Cdlsafunction (or other callable object) and returnsits result. apply's behavior is exactly the same as func(* args,**
keywords). The* and ** forms are covered in Section 4.10 in Chapter 4. Inamost al cases of practica interest,
you can just use the syntax func(* args,** keywords) and avoid apply.

bool Python 2.2 and later
bool (X)

Returns 0, aso known asFalsg, if argument x evauates asfadse; returns 1, also known as True, if argument x
evaluates astrue. See also Section 4.2.6 in Chapter 4. In Python 2.3, bool becomes atype (a subclass of int), and
built-in names False and True refer to the only two instances of type bool. They are still numbers with vaues of 0 and
1 respectively, but str(True) becomes 'True, and str(False) becomes 'False, while in Python 2.2 the corresponding
gringsare'0 and '1' respectively.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

8.3 ThesysModule

The attributes of the sys module are bound to data and functions that provide information on the state of the Python
interpreter or that affect the interpreter directly. This section documents the most frequently used attributes of sys, in
aphabetical order.

argv

Thelist of command-line arguments passed to the main script. argv[0] isthe name or full path of the main script, or
'-c' if the -c option was used. See Section 8.4 later in this chapter for agood way to use sys.argv.

displayhook
di spl ayhook(val ue)

In interactive sessons, the Python interpreter calls displayhook, passing it the result of each expression-statement
entered. The default displayhook does nothing if value is None, otherwise it preserves and displays val ue:

if value is not None:
_ _builtin_ _._ = value
print repr(value)

Y ou can rebind sys.displayhook in order to change interactive behavior. The origina valueisavalable assys.
_displayhook .

excepthook

except hook(type, val ue, traceback

)

When an exception is not caught by any handler, Python calls excepthook, passing it the exception class, exception
object, and traceback object, as covered in Chapter 6. The default excepthook displays the error and traceback.
Y ou can rebind sys.excepthook to change what is displayed for uncaught exceptions (just before Python returnsto
the interactive loop or terminates). The origind valueisaso available assys._excepthook .

exc_info
exc_info()

If the current thread is handling an exception, exc_info returns atuple whose three items are the class, object, and
traceback for the exception. If the current thread is not handling any exception, exc_info returns (None,None,None).
A traceback object indirectly holds referencesto dl variables of al functionsthat propagated the exception. Thus, if
you hold areference to the traceback object (for example, indirectly, by binding avariable to the whole tuple that
exc_info returns), Python hasto retain in memory datathat might otherwise be garbage-collected. So you should
make sure that any binding to the traceback object is of short duration. To ensure that the binding gets removed, you
can useatry/findly statement (discussed in Chapter 6).

exit

avi t (ar d=N)\

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

8.4 The getopt Module

The getopt modul e helps parse the command-line options and arguments passed to a Python program, availablein
sys.argv. The getopt module distinguishes arguments proper from options: options start with *-' (or *--' for long-form
options). Thefirgt non-option argument terminates option parsing (Smilar to most Unix commands, and differently
from GNU and Windows commands). Module getopt supplies asingle function, aso called getopt.

getopt

get opt (args, opti ons,
long_options=[])

Parses command-line options. args isusualy sysargv[1:]. options isastring: each character isan option |etter,
followed by "' if the option takes aparameter. long_options isalist of strings, each along-option name, without the
leading --', followed by '=' if the option takes a parameter.

When getopt encounters an error, it raises GetoptError, an exception class supplied by the getopt module.
Otherwise, getopt returnsapair (opts,args_proper), where opts isalist of pairsof the form (option,parameter) in
the same order in which options arefound in args. Each option isagring that startswith asingle hyphen for a
short-form option or two hyphensfor along-form one; each parameter isaso astring (an empty string for options
that don't take parameters). args proper isthelist of program argument stringsthet are left after removing the
options.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

8.5 The copy M odule

Asdiscussed in Chapter 4, assignment in Python does not copy the right-hand side object being assigned. Rether,
assignment adds areference to the right-hand side object. When you want a copy of object x, you can ask x for a
copy of itsdlf. If x isaligt, X[:] isacopy of x. If x isadictionary, x.copy() returnsacopy of x.

The copy module supplies acopy function that creates and returns a copy of most types of objects. Normal copies,
such as x[:] for alist x and copy.copy(x), are dso known as shalow copies. When x has references to other objects
(e.g., itemsor attributes), anormal copy of x has distinct references to the same objects. Sometimes, however, you
need a deep copy, where referenced objects are copied recursively. Module copy supplies a degpcopy(x) function
that performs adeep copy and returnsit asthe function's result.

copy
copy(X)

Creates and returns acopy of x for x of most types (copies of modules, classes, frames, arrays, and interna types
are not supported). If x isimmutable, copy.copy(x) may return X itself asan optimization. A class can customizethe
way copy.copy copiesitsinstances by having aspecid method __copy (sdlf) that returns anew object, a copy of
of.

deepcopy
deepcopy(X, [meno])

Makes adeep copy of x and returnsit. Deep copying implies arecursive walk over adirected graph of references.
A precaution is needed to preserve the graph's shape: when references to the same object are met more than once
during the walk, distinct copies must not be made. Rather, references to the same copied object must be used.
Condder thefollowing Smpleexample:

sublist =1, 2]

original = [sublist, sublist]

t hecopy = copy. deepcopy(original)

origind[0] isorigina[1] isTrue(i.e, thetwo itemsof list origind refer to the same object). Thisisan important
property of origina and therefore must be preserved in anything that claimsto be a copy of it. The semantics of
copy.deepcopy are defined to ensure that thecopy[0] isthecopy[1] isaso Truein this case. In other words, the
shapes of the graphs of references of original and thecopy are the same. Avoiding repeated copying has an important
beneficiad sde effect: preventing infinite loops that would otherwise occur if the graph has cycles.

copy.deepcopy accepts a second, optiona argument memo, which isadictionary that mapstheid() of objects
already copied to the new objects that are their copies. memo is passed by recursive cals of degpcopy to itself, but
you may aso explicitly passit (normally asan originaly empty dictionary) if you need to keep such a correspondence
map between the identities of originals and copies of objects.

A class can customize the way copy.deepcopy copiesitsinstances by having aspecial method __deepcopy __ (sdif,
memo) that returns a new object, a deep copy of self. When __deepcopy needsto deep copy some referenced
object subobject, it must do so by calling copy.deepcopy(subobject,memo). When a class has no special method
_deepcopy__, copy.deepcopy on an instance of that classtriesto call special methods __getinitargs
_getdtate ,and __setstate , which are covered in Section 11.1.2.3.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

8.6 The bhisect Module

The bisect module uses a bisection agorithm to keep alist in sorted order asitems are inserted. bisect's operationis
faster than calling aligt's sort method after each insertion. This section documents the main functions supplied by
bisect.

bisect

bi sect (seq, item | 0=0, hi
=sys. maxint)

Returnstheindex i into seq where item should be inserted to keep seq sorted. In other words, i is such that each
itemin seq[:i] islessthan or equal to item, and eechitemin seq[i:] is greater than or equd to item. seq must bea
sorted sequence. For any sorted sequence seq, seg[bisect(seq,y)-1]= =y isequivaent to yin seq, but faster if len(seq
) islarge. Y ou may pass optiona arguments lo and hi to operate on the dice seq[lohi].

insort

i nsort(seq,itemlo=0, hi
=sys. maxint)

Like seq.insert(bisect(seg,item),item). In other words, seq must be a sorted mutable sequence, and insort modifies
Seq by inserting item at the right spot, so that seq remains sorted. Y ou may pass optiona arguments lo and hi to
operate on the dice seg[lo:hi].

Module bisect dso supplies functions bisect_left, bisect_right, insort_left, and insort_right for explicit control of
search and insertion Strategies into sequences that contain duplicates. bisect isasynonym for bisect _right, and insort
isasynonym for insort_right.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

8.7 The UserList, UserDict, and User String Modules

The UserLigt, UserDict, and UserString modules each supply one class, with the same name as the respective
module, that implements al the methods needed for the classsingtances to be mutable sequences, mappings, and
strings, respectively. When you need such polymorphism, you can subclass one of these classes and override some
methods rather than have to implement everything yourself. In Python 2.2 and later, you can subclass built-in types
list, dict, and str directly, to smilar effect (see Section 5.2). However, these modules can il be handy if you need to
create aclassic classin order to keep your code compatible with Python 2.1 or earlier.

Each instance of one of these classes has an attribute called data that is a Python object of the corresponding built-in
type (ligt, dict, and str, respectively). Y ou can instantiate each class with an argument of the appropriate type (the
argument is copied, so you can later modify it without Sde effects). UserList and UserDict can also beingtantiated
without argumentsto createinitialy empty containers.

Module UserString aso supplies class MutableString, which is very smilar to class UserString except that instances
of MutableString are mutable. Instances of MutableString and its subclasses cannot be keysinto adictionary.
Instances of both UserString and MutableString can be Unicode strings rather than plain strings: just use aUnicode
gring astheinitidizer argument at instantiation time.

If you subclass UserList, UserDict, UserString, or MutableString and then override __init.__, make surethe _init_
_ method you write can aso be called with one argument of the appropriate type (aswell as without arguments for
UserList and UserDict). Also be surethat your __init__ method explicitly and appropriately calsthe _init_
method of the superclass, asusual.

For maximum efficiency, you can arrange for your subclassto inherit from the appropriate built-in type when feasible
(i.e., when your program runswith Python 2.2), but keep the ability to fall back to these modules when necessary
(i.e., when your program runswith Python 2.1). Hereisatypicd idiom you can usefor this purpose:

try: # can we subclass list?
class _Tenp(list):
pass
except: # no: use UserlList.UserlList as base cl ass
from UserList inport UserList as Baseli st
el se: # yes: remove _Tenp and use list as base cl ass
del _Tenp
BaseList = |ist

cl ass Aut omati cal | yExpandi ngLi st (BaseLi st):
"""a list such that you can always set L[i]=x even for a large i
L automatically grows, if needed, to make i a valid index."""

def _ _setitem _(self, idx, val):
sel f.extend((1+i dx-1en(self))*[None])
BaselList. _setitem _(self, idx, va

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 9. Strings and Regular Expressions

Python supports plain and Unicode strings extensively, with statements, operators, built-in functions, methods, and
dedicated modules. This chapter covers the methods of string objects, talks about string formatting, documentsthe
string, pprint, and repr modules, and discussesissues rel ated to Unicode strings.

Regular expressions et you specify pattern strings and alow searches and subgtitutions. Regular expressions are not
easy to magter, but they are a powerful tool for processing text. Python offersrich regular expression functionality
through the built-in re module, as documented in this chapter.

[TeamLiB] =

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

9.1 Methods of String Objects

Pain and Unicode strings are immutabl e sequences, as covered in Chapter 4. All immutabl e-sequence operations
(repetition, concatenation, indexing, dicing) apply to strings. A string object s aso supplies severa non-mutating
methods, as documented in this section. Unless otherwise noted, each method returns a plain string when sisaplan
gtring, or aUnicode string when sisa Unicode string. Terms such as letters, whitespace, and so on refer to the
corresponding attributes of the string module, covered later in this chapter. See also the later section Section 9.2.1.

capitalize
S.capitalize()

Returnsacopy of swherethefirst character, if aletter, isuppercase, and all other letters, if any, are lowercase.
center

S.center(n)

Returnsagtring of length max(len(s),n), with acopy of sin the central part, surrounded by equa numbers of spaces
on both sides (e.g., 'ciao’.center(2) is'ciao, 'ciao’.center(7) is' cian).

count

S. count (sub, start =0, end
=sys. maxint)

Returns the number of occurrences of substring sub in g start:end].

encode

S. encode(codec=None, errors
='strict')

Returns a plain string obtained from s with the given codec and error handling. See Section 9.6 later in this chapter
for more detalls.

endswith

S. endswi t h(suffix, start =0, end
=sys. maxint)

Returns True when g start:end] endswith suffix, otherwise False.
expandtabs
S. expandt abs(t absi ze=8)

Returns a copy of swhere each tab character is changed into one or more spaces, with tab stops every tabsize
characters.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

9.2 Thestring Module

The string module supplies functions that duplicate each method of string objects, as covered in the previous section.
Each function takes the string object asitsfirst argument. Module string also has several useful string-valued attributes:
aCii_|etters

The string ascii_lowercasetascii_uppercase
aii_lowercase

The dring ‘abedefghijklmnopgrstuvwxyz
asCii_uppercase

The string'ABCDEFGHIJKLMNOPQRSTUVWXY Z'
digits

The string '0123456789'
hexdigits

The string '0123456789abcdef ABCDEF
|etters

The string lowercasetuppercase
lowercase

A dring containing all charactersthat are deemed lowercase letters: at |east 'abedefghijklmnopgrstuvwxyz', but more
letters (e.g., accented ones) may be present, depending on the active locae
octdigits

The string '01234567'
punctugtion

The string 1"#$%&\'()* +,-./;;<=>?2@[\|* _{[}~' (i.e., dl ASCII charactersthat are deemed punctuation characters
inthe"C" locale; does not depend on what locaeis active)
printable

The string of those charactersthat are deemed printable (i.e., digits, letters, punctuation, and whitespace)
uppercase

A dtring containing al charactersthat are deemed uppercase letters: a least

'ABCDEFGHIKLMNOPQRSTUVWXY Z', but more letters (e.g., accented ones) may be present, depending on
theactivelocae

whitespace

A dtring containing all charactersthat are deemed whitespace: at least pace, tab, linefeed, and carriage return, but
more characters (e.g., control characters) may be present, depending on the active locale

Y ou should not rebind these attributes, since other parts of the Python library may rely on them and the effects of
rebinding them would be undefined.

9.2.1 Locale Sensitivity

Thelocade moduleis covered in Chapter 10. Locd e setting affects some attributes of module string (letters,

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

9.3 String For matting

In Python, astring-formatting expression hasthe syntax:
format 9% val ues

where format isaplain or Unicode string containing format specifiersand values isany single object or acollection
of objectsin atuple or dictionary. Python's string-formatting operator has roughly the same set of featuresasthe C
language's printf and operatesin asmilar way. Each format specifier isa substring of format that startswith a
percent sign (%) and ends with one of the conversion characters shownin Table 9-1.

Table 9-1. String-formatting conversion characters

Character Output format

d,i Signed decimd integer

u Unsigned decimd integer
) Unggned octd integer

Unsigned hexadecimd integer
(lowercase letters)

Unsigned hexadecimd integer

X (uppercase | etters)
Floating-point vauein exponentia
e
form (lowercase e for exponent)
E Floating-point vauein exponentiad
form (uppercase E for exponent)
f,F Floating-point vauein decima form
Likeeor E when exp isgrester than
0,G 4 or lessthan the precision; otherwise
likefor F
c Single character

Notes

Vaue must be number

Vaue must be number

Vaue must be number

Vaue must be number

Vaue must be number

Vaue must be number

Vaue must be number

Vaue must be number

exp isthe exponent of the number
being converted

Vaue can beinteger or
sngle-character string

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

9.4 The pprint Module

The pprint module pretty-prints complicated data structures, with formaiting that may be more readable than that

supplied by built-in function repr (see Chapter 8). To fine-tune the formatting, you can indtantiate the PrettyPrinter
class supplied by module pprint and apply detailed control, helped by auxiliary functions aso supplied by module
pprint. Most of the time, however, one of the two main functions exposed by module pprint suffices.

pformat
pf or mat (obj)

Returns astring representing the pretty-printing of obj.
pprint

pprint (obj , stream=sys. st dout)

Outputs the pretty-printing of obj to file object stream, with aterminating newline.

Thefollowing statements are the same:
print pprint.pformat(x)
pprint. pprint(x)

Either of these constructs will be roughly the same as print x in many cases, such as when the string representation of
x fitswithin oneline. However, with something like x=range(30), print x displays x in two lines, breaking a an
arbitrary point, while usng module pprint displays x over 30 lines, oneline per item. Y ou can use module pprint when
you prefer the modul€'s specific display effectsto the ones of normal string representation.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

9.5 Therepr Module

The repr module supplies an dternative to the built-in function repr (see Chapter 8), with limitson length for the
representation string. To fine-tune the length limits, you can ingtantiate or subclass the Repr class supplied by module
repr and apply detailed control. Most of the time, however, the main function exposed by module repr suffices.

repr
repr (obj)

Returns a gtring representing obyj, with sensiblelimits on length.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

9.6 Unicode

Plain gtrings are converted into Unicode strings ether explicitly, with the unicode built-in, or implicitly, when you pass
aplain string to afunction that expects Unicode. In either case, the conversion is done by an auxiliary object known
as a codec (for coder-decoder). A codec can aso convert Unicode stringsto plain strings either explicitly, with the
encode method of Unicode strings, or implicitly.

Y ou identify a codec by passing the codec name to unicode or encode. When you pass no codec name and for
implicit conversion, Python uses a default encoding, normally 'ascii’. (Y ou can change the default encoding in the
startup phase of a Python program, as covered in Chapter 13; see aso setdefaultencoding in Chapter 8.) Every
converson hasan explicit or implicit argument errors, a string specifying how conversion errors are to be handled.
The default is'strict’, meaning any error raises an exception. When errors is'replace, the conversion replaces each
character causing an error with 7 in aplain-string result or with u'\ufffd' in a Unicode result. When errorsis‘ignore,
the conversion silently skips charactersthat cause errors.

9.6.1 The codecs Module

The mapping of codec names to codec objectsis handled by the codecs module. This module lets you devel op your
own codec objects and register them so that they can be looked up by name, just like built-in codecs. Module
codecs dso lets you look up any codec explicitly, obtaining the functions the codec uses for encoding and decoding,
aswell asfactory functionsto wrap file-like objects. Such advanced facilities of module codecs are rardly used, and
are not covered further in this book.

The codecs module, together with the encodings package, supplies built-in codecs useful to Python developers
dedling with internationalization issues. Any supplied codec can be indalled as the default by module sitecustomize, or
can be specified by name when converting explicitly between plain and Unicode strings. The codec normdly ingtdled
by default is'ascii’, which accepts only characters with codes between 0 and 127, the 7-bit range of the American
Standard Code for Information Interchange (ASCI1) that is common to most encodings. A popular codecis'latin-1,
afadt, built-in implementation of the |SO 8859-1 encoding that offers a one-byte-per-character encoding of al
specid characters needed for Western European languages.

The codecs module a so supplies codecs implemented in Python for most 1SO 8859 encodings, with codec names
from 'iso8859-1' to 'isn8859-15". On Windows systems only, the codec named 'mbcs wraps the platform's
multibyte character set conversion procedures. In Python 2.2, many codecs are added to support Asian languages.
Module codecs also supplies several standard code pages (codec names from 'cp037' to 'cpl258'), Mac-specific
encodings (codec names from 'mac-cyrillic' to 'mac-turkish’), and Unicode standard encodings 'utf-8' and 'utf-16'
(the latter also have specific big-endian and little-endian variants 'utf-16-be' and 'utf-16-1€). For use with UTF-16,
module codecs also supplies attributesBOM_BE and BOM _LE, byte-order marksfor big-endian and little-endian
machines respectively, and BOM, byte-order mark for the current platform.

Module codecs a so suppliestwo functionsto make it easier to dedl with encoded text during input/output operations.

EncodedFile

EncodedFi | e(fil e, dat acodec,
filecodec=None, errors='"strict"')

Wrapsthefile-like object file, returning another file-like object ef that implicitly and transparently appliesthe given
encodingsto al dataread from or written to the file. When you write astring sto €f, ef first decodes s with the codec

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

9.7 Regular Expressionsand there Module

A regular expression isadiring that represents a pattern. With regular expression functionality, you can compare that
pattern to another string and seeif any part of the string matches the pattern.

The re module suppliesdl of Python's regular expression functionality. The compile function builds aregular
expression object from a pattern string and optional flags. The methods of aregular expression object look for
matches of the regular expresson in astring and/or perform substitutions. Module re dso exposes functions
equivaent to aregular expression's methods, but with the regular expression’s pattern string astheir first argument.

Regular expressions can be difficult to master, and this book does not purport to teach them—I cover only the ways
in which you can use them in Python. For genera coverage of regular expressions, | recommend the book Mastering
Regular Expressions, by Jeffrey Friedl (O'Reilly). Friedl's book offers thorough coverage of regular expressons at
both the tutorial and advanced levels.

9.7.1 Pattern-String Syntax

The pattern string representing aregular expression follows a specific syntax:

Alphabetic and numeric characters stland for themsalves. A regular expression whose pattern isa string of
|letters and digits matches the same giring.

Many aphanumeric characters acquire pecid meaning in a pattern when they are preceded by abackdash
).

Punctuation works the other way around. A punctuation character is self-matching when escaped, and hasa
gpeciad meaning when unescaped.

The backdash character itsalf is matched by arepeated backdash (i.e,, the pattern \\).

Since regular expression patterns often contain backdashes, you generaly want to specify them using raw-string
syntax (coveredin Chapter 4). Pattern elements (e.g., r'\t', which is equivalent to the non-raw string literd \\t') do
meatch the corresponding specia characters (e.g., the tab character \t'). Therefore, you can use raw-string syntax
even when you do need aliterd match for some such specia character.

Table 9-2 ligtsthe specid elementsin regular expression pattern syntax. The exact meanings of some pattern
elements change when you use optiond flags, together with the pattern string, to build the regular expression object.
The optiona flags are covered later in this chapter.

Table 9-2. Regular expression pattern syntax

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

| TeamLiB | MEXT F

Part I11: Python Library and
Extension Modules

Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16

Chapter 17
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 10. Fileand Text Operations

This chapter covers deding with files and the filesystem in Python. A fileisastream of bytesthat a program can read
and/or write, while afilesystem isahierarchica repository of files on aparticular computer system. Becausefilesare
such a core programming concept, severa other chapters aso contain materia about handling files of specific kinds.

In Python, the os module supplies many of the functions that operate on the filesystem, so this chapter starts by
introducing the os module. The chapter then proceeds to cover operations on the filesystemn, including comparing,
copying, and deleting directories and files, working with file paths, and ng low-levd file descriptors.

Next, this chapter discusses the typical ways Python programs read and write data, viabuilt-in file objects and the
polymorphic concept of file-like objects (i.e., objectsthat are not files, but still behave to some extent like files).
Python file objects directly support the concept of text files, which are streams of characters encoded as bytes. The
chapter a so covers Python's support for datain compressed form, such as archivesin the popular ZIP format.

While many modern programs rely on agraphical user interface (GUI), text-based, non-graphical user interfacesare
often till useful, asthey are smple, fast to program, and lightweight. This chapter concludes with materia about text
input and output in Python, including information about presenting text that is understandable to different users, no
matter where they are or what language they speak. Thisisknown asinternationalization (often abbreviated i18n).

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

10.1 Theos Module

The os moduleis an umbrellamodule that presents areasonably uniform cross-platform view of the different
capabilities of various operating systems. The module provides functiondity for creating files, manipulating files and
directories, and creating, managing, and destroying processes. This chapter covers the filesystem-related capabilities
of the osmodule, while Chapter 14 covers the process-related capabilities.

The os module supplies aname éttribute, which isastring that identifies the kind of platform on which Python isbeing
run. Possible values for name are ‘posix’ (al kinds of Unix-like platforms), 'nt' (al kinds of 32-bit Windows
platforms), 'mac’, 'os2', and ‘java. Y ou can often exploit unique capabilities of aplatform, at least in part, through
functions supplied by os. Thisbook dealswith cross-platform programming, however, not with platform-specific
functiondity, so | do not cover parts of osthat exist only on one kind of platform, nor do | cover platform-specific
modules. All functionality covered in thisbook isavailable at least on both '‘posix’ and 'nt' platforms. However, | do
cover any differences among the waysin which each given piece of functiondity is provided on different platforms.

10.1.1 OSError Exceptions

When arequest to the operating system fails, os raises an exception, an instance of OSError. 0s aso exposes class
OSError with the name os.error. Instances of OSErTror expose three useful attributes:
errno

The numeric error code of the operating system error
strerror

A sring that summarily describesthe error
filename

The name of the file on which the operation faled (for file-rdated functions only)

osfunctions can aso raise other stlandard exceptions, typicaly TypeError or VaueError, when the error isthat they
have been called with invalid argument types or values and the underlying operating system functiondity has not even
been attempted.

10.1.2 Theerrno Module

The errno module supplies symbolic namesfor error code numbers. To handle possible system errors selectively,
based on error codes, use errno to enhance your program'’s portability and readability. For example, here's how you
might handle only "file not found" errors, while propagating others:

try: os.sone_os_function_or_other()

except OSError, err:

i mport errno
check for "file not found" errors

if err.errno !'= errno. ENCENT: raise # rerai se other cases
proceed with the specific case you can handl e
print "Warning: file", err.filenanme, "not found -- continuing"

errno aso supplies adictionary named errorcode: the keys are error code numbers, and the corresponding names
arethe error names, such as'ENOENT'. Displaying errno.errorcodeferr.errno], as part of your diagnosis of some
os.error instance err, can often make diagnosis clearer and more understandable to readers who are specidists of the
specific platform.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

10.2 Filesystem Operations

Using the os module, you can manipulate the filesystem in avariety of ways: cregting, copying, and deleting filesand
directories, comparing files, and examining filesystem information about files and directories. This section documents
the attributes and methods of the os module that you use for these purposes, and aso covers some related modules
that operate on the filesystem.

10.2.1 Path-String Attributes of the os M odule

A fileor directory isidentified by astring, known asits path, whose syntax depends on the platform. On both
Unix-like and Windows platforms, Python accepts Unix syntax for paths, with dash (/) asthe directory separator. On
non-Unix-like platforms, Python aso accepts platform-specific path syntax. On Windows, for example, you can use
backdash (\) asthe separator. However, you do need to double up each backdash to \\ in normal string literals or
use raw-string syntax as covered in Chapter 4. In the rest of this chapter, for brevity, Unix syntax is assumed in both
explanations and examples.

Module os supplies atributes that provide details about path strings on the current platform. Y ou should typicaly use
the higher-level path manipulation operations covered in Section 10.2.4 later in this chapter, rather than lower-level
string operations based on these attributes. However, the attributes may still be useful at times:

curdir

The string that denotes the current directory ('." on Unix and Windows)
defpath

The default search path used if the environment lacks a PATH environment variable
linesep

The gtring that terminates text lines (\n' on Unix, \r\n" on Windows)
extsep

The gtring that separates the extension part of afile's name from the rest of the name (. on Unix and Windows)
pardir

The string that denotes the parent directory ('.." on Unix and Windows)
pathsep

The separator between pathsin lists of paths, such asthose used for the environment variable PATH (' on Unix, ;'
on Windows)

sep

The separator of path components (/' on Unix, \\' on Windows)

10.2.2 Permissions

Unix-like platforms associate nine bits with each file or directory, three each for the file's owner (user), its group, and
anybody e se, indicating whether the file or directory can be read, written, and executed by the specified subject.
These nine bits are known asthefile's permission bits, part of thefile's mode (abit string that aso includes other bits
describing thefile). These bits are often displayed in octa notation, which groups three bitsin each digit. For
example, amode of 0664 indicates afile that can be read and written by its owner and group, but only read, not
written, by anybody ese. When any process on a Unix-like system creates afile or directory, the operating system
appliesto the specified mode a bit mask known as the process's umask, which can remove some of the permission
hite

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

10.3 File Objects

Asdiscussed earlier in this chapter, fileisabuilt-in type in Python. With afile object, you can read and/or write data
to afile as seen by the underlying operating system. Python reactsto any 1/0 error related to afile object by raising
an instance of built-in exception class |OError. Errorsthat cause this exception include open failing to open or create
afile, calling amethod on afile object to which that method doesn't apply (e.g., calling write on aread-only file
object or caling seek on anon-seekablefile), and I/O errors diagnosed by afile object's methods. This section
documentsfile objects, aswell as some auxiliary modulesthat help you access and deal with their contents.

10.3.1 Creating a File Object with open

Y ou normaly create a Python file object with the built-in open, which has the following syntax:
open(fil enane, node="'r', bufsize=-1)

open opensthe file named by filename, which must be a string that denotes any path to afile. open returnsa Python
file object, which isan ingtance of the built-in typefile. Cdling fileisjust like calling open, but file wasfirst introduced
in Python 2.2. If you explicitly passa mode string, open can aso create filename if the file does not dready exist
(depending on the vadue of mode, aswell discussin amoment). In other words, despite its name, open is not limited
to opening exigting files, but isaso able to create new onesif needed.

10.3.1.1 Filemode

mode isastring that denotes how thefileisto be opened (or created). mode can have the following values:
Irl

Thefilemust dready exist, and it is opened in read-only mode.
IWI

Thefileisopened in write-only mode. Thefileistruncated and overwritten if it dready exigts, or created if it does not
exis.
'a

Thefileis opened in write-only mode. Thefileiskept intact if it already exigts, and the data you write is gppended to
what's dready inthefile. Thefileiscrested if it does not exist. Cdling f.seek isinnocuous, but has no effect.
Ir+l

Thefilemust dready exist and is opened for both reading and writing, so all methods of f can be called.
IW+I

Thefileis opened for both reading and writing, so dl methods of f can be called. Thefileistruncated and overwritten
if it already exigts, or created if it does not exist.
Ia_l_l

Thefileisopened for both reading and writing, so al methods of f can be cadlled. Thefileiskept intact if it aready
exigs, and the datayou write is gppended to what's already in thefile. Thefileis created if it does not exist. Calling f
.Seek has no effect if the next I/O operation on f writes data, but works normally if the next 1/0 operation on f reads
data.

10.3.1.2 Binary and text modes

The mode string may aso have any of the values just explained followed by ab or t. b denotes binary mode, whilet

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

10.4 Auxiliary Modulesfor Filel/O

File objects supply al functiondity that is strictly needed for file I/O. There are some auxiliary Python library modules,
however, that offer convenient supplementary functionality, making I/O even easier and handier in severa important
specid cases.

10.4.1 Thefileinput Module

Thefileinput module lets you loop over dl thelinesin alist of text files. Performanceis quite good, comparable to the
performance of direct iteration on each file, ancefileinput usesinternd buffering to minimize 1/O. Therefore, you can
use modulefileinput for line-oriented file input whenever you find the modulée's rich functiondlity convenient, without
worrying about performance. Theinput function isthe main function of module fileinput, and the module aso provides
aFilelnput classthat supports the same functiondity asthe modul€'s functions.

close
close()
Closes the whole sequence, so that iteration stops and no file remains open.

Filel nput

class Filelnput(files=None,
i npl ace=0, backup="", buf si ze=0)

Creates and returns an instance f of class Filelnput. Arguments are the same asfor fileinput.input, and methods of f
have the same names, arguments, and semantics as functions of module fileinput. f dso suppliesamethod readline,
which reads and returnsthe next line. Y ou can use class Filel nput explicitly, rather than the singleimplicit instance
used by the functions of module fileinput, when you want to nest or otherwise mix loops thet read lines from more
than one sequence of files.

filelineno
filelineno()

Returns the number of linesread so far from the file now being read. For example, returns 1 if the first line hasjust
been read from the current file.

filename
filename()

Returns the name of thefile being read, or Noneif no line has been read yet.
input

i nput (fil es=None, i npl ace=0
backup='"', buf si ze=0)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

10.5 The Stringl O and cStringl O Modules

Y ou can implement file-like objects by writing Python classes that supply the methods you need. If dl you want isfor
datato reside in memory rather than on afile as seen by the operating system, you can use the Stringl O or cStringlO
module. The two modules are dmost identica: each supplies afactory function to create in-memory file-like objects.
The difference between them isthat objects created by module Stringl O are instances of class Stringl O.Stringl O.

Y ou may inherit from this classto create your own customized file-like objects, overriding the methods that you need
to specialize. Objects created by module cStringl O, on the other hand, are instances of a specid-purpose type, not
of aclass. Performance is much better when you can use cStringl O, but inheritanceis not feasible. Furthermore,
cStringl O does not support Unicode.

Each module supplies afactory function named Stringl O that creates afile-like object fl.
Stringl O
Stringl Q(str="")

Creates and returns an in-memory file-like object fl, with al methods and attributes of a built-in file object. The data
contents of fl areinitidized to be acopy of argument str, which must be aplain string for the Stringl O factory
functionin cStringl O, whileit can be aplain or Unicode string for the function in Stringl O.

Besides al methods and attributes of built-in file objects, as covered in Section 10.3.2 earlier in this chapter, fl
supplies one supplementary method, getva ue.

getvalue
fl.

getvalue()

Returns the current data contents of fl asastring. Y ou cannot call fl.getvaue after you cal fl.close: close freesthe
buffer that fl internally keeps, and getval ue needs to access the buffer to yield itsresult.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

10.6 Compressed Files

Although storage space and transmission bandwidth are increasingly cheap and abundant, in many casesyou can
save such resources, at the expense of some computationd effort, by using compression. Since computationa power
grows chegper and more abundant even faster than other resources, such as bandwidth, compression's popularity
keeps growing. Python makesit easy for your programs to support compression by supplying dedicated modulesfor
compression as part of every Python distribution.

10.6.1 The gzip Module

The gzip module lets you read and write files compatible with those handled by the powerful GNU compression
programs gzip and gunzip. The GNU programs support several compression formats, but module gzip supports only
the highly effective native gzip format, normally denoted by appending the extension .gz to afilename. Module gzip
suppliesthe GzipFile class and an open factory function.

GzpFile

class Gzi pFil e(fil enanme=None,
node=None, conpr essl evel =9,

fil eobj =None)

Creates and returns afile-like object f that wrapsthefile or file-like object fileobj . f suppliesal methods of built-in
file objects except seek and tell. Thus, f is not seekable: you can only access f sequentidly, whether for reading or
writing. When fileobj is None, filename must be astring that names afile: GzipFile opensthét file with the given
mode (by default, 'rb"), and f wrapsthe resulting file object. mode should be one of "ad', 'rb’, 'wb', or None. If mode
isNone, f usesthe mode of fileobyj if it isableto find out the mode; otherwiseit uses'rb'. If filename isNone, f uses
thefilename of fileobyj if ableto find out the name; otherwiseit uses”. compressievel isan integer between 1 and 9:
1 requests modest compression but fast operation, and 9 requests the best compression feasible, even if that requires
more computation.

File-like object f generdly delegates dl methods to the underlying file-like object fileobyj, trangparently accounting for
compression as needed. However, f does not allow non-sequentia access, so f does not supply methods seek and
tell. Moreover, caling f.close does not close fileobj when f was created with an argument fileobj that is not None.
Thisbehavior of f.closeisvery important when fileobj isan instance of StringlO.Stringl O, sinceit meansyou can call
fileobj .getval ue after f.close to get the compressed data as a string. This behavior dso meansthat you haveto cdll
fileobj .close explicitly after caling f.close.

open

open(filenanme, mode="rb',
conpr essl evel =9)

Like GzipFilg(filename,mode,compresslevel), but filename is mandatory and thereis no provision for passing an
already opened fileob.

Say that you have some function f(x) that writes data to atext file object x, typicaly by caling x.write and/or x
writdines. Getting f to write datato a gzip-compressed text file instead is easy:

i mport gzip

underlying_file = open('x.txt.gz', 'wh")

e e e e o T L e e i i el . "' I 1 77 L1 o et el Ly e LT - B [S T

http://www.pkware.com/appnote.html
http://www.info-zip.org/pub/infozip/default.htm
http://www.info-zip.org/pub/infozip/zlib/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

10.7 Text Input and Output

Python presents non-GUI text input and output channelsto your programs asfile objects, so you can usethe
methods of file objects (covered in Section 10.3 earlier in this chapter) to manipulate these channdls.

10.7.1 Standard Output and Standard Error

The sysmodule, covered in Chapter 8, has attributes stdout and stderr, file objects to which you can write. Unless
you are usng some sort of shell redirection, these streams connect to the termina in which your script is running.
Nowadays, actua terminds arerare: thetermind is generally ascreen window that supports text input/output (e.g.,
an MS-DOS Prompt console on Windows or an xterm window on Unix).

The distinction between sys.stdout and sys.stderr isamatter of convention. sys.stdout, known as your script's
standard output, is where your program emits results. sys.stderr, known as your script's standard error, iswhere
error messages go. Separating program results from error messages helps you use shell redirection effectively. Python
respectsthis convention, using sys.stderr for error and warning messages.

10.7.2 The print Statement

Programs that output results to standard output often need to write to sys.stdout. Python's print statement can be a
convenient aternative to sys.stdout.write. The print statement has the following syntax:
print [>>fileobject,] expressions [,]

The norma destination of print's output isthe file or file-like object that isthe value of the stdout attribute of the sys
module. However, when >>fileobject, is present right after keyword print, the statement uses the given fileobject
instead of sys.stdout. expressions isalist of zero or more expressions separated by commas (). print outputs each
expression, in order, asastring (using the built-in str, covered in Chapter 8), with a space to separate strings. After
al expressions, print by default outputs \n' to terminate the line. When atrailing commais present at the end of the
statement, however, print does not output the closing \n'.

print workswell for the kind of informal output used during development to help you debug your code. For
production output, you often need more control of formatting than print affords. Y ou may need to control spacing,
fild widths, the number of decimals for floating-point vaues, and so on. In this case, prepare the output asastring
with the string-formaiting operator % covered in Chapter 9. Then, you can output the resulting string, normaly with
the write method of the appropriate file object.

When you want to direct print's output to another file, you can temporarily change sys.stdout. The following example
shows a genera -purpose redirection function that you can use for such atemporary change:

def redirect(func, *args, **kwds):
"""redirect(func, ...) -> (output string result, func's return val ue)

func nmust be a callable that outputs results to standard output.
redirect captures those results in nenory and returns a pair, wth
the results as the first itemand func's return value as the second
one.

i mport sys, cStringlO
save_out = sys. stdout
sys.stdout = cStringlO Stringl()

try:

v om~t vl —_— F simn Al K Ay N~ Sk lovnad ~\

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

10.8 Richer-Text 1/0

The tools we have covered so far support the minimal subset of text 1/0 functiondlity that al platforms supply. Most
platforms also offer richer-text 1/O capabilities, such as responding to single keypresses (not just to entire lines of
text) and showing text in any spot of thetermind (not just sequentialy).

Python extensions and core Python modules let you access platform-specific functiondity. Unfortunately, various
platforms expose this functionaity in different ways. To develop cross-platform Python programs with rich-text 1/0
functiondity, you may need to wrap different modules uniformly, importing platform-specific modules conditionaly
(usudly with the try/except idiom covered in Chapter 6).

10.8.1 Thereadline Module

The readline module wraps the GNU Readline Library. Readlinelets the user edit text lines during interactive input,
and also recall previouslinesfor further editing and re-entry. GNU Readlineiswiddy ingtdled on Unix-like
platforms, and isavailable at http://cnswww.cns.cwru.edu/~chet/readling/rltop.html. A Windows port (
http://starship.python.net/crew/kernr/) is available, but not widely deployed. Chris Gonnerman’'s module, Alternative
Readline for Windows, implements a subset of Python's standard readline module (using asmall dedicated .pyd file
instead of GNU Readline) and can be freely downloaded from http://newcenturycomputers.net/projects/readline.htm

When either readline module is |oaded, Python uses Readline for al line-oriented input, such asraw_input. The
interactive Python interpreter dwaystries |oading readline to enable line editing and recdll for interactive sessons.

Y ou can call functions supplied by module readline to control advanced functiondity, particularly the history
functiondity for recaling lines entered in previous sessions, and the completion functionality for context-sengitive
completion of the word being entered. See http://cnswww.cns.cwru.edu/~chet/readline/rltop.html#Documentation for
GNU Readline documentation, with details on configuration commands. Alternative Readline al so supports history,
but the completion-related functions it supplies are dummy ones: these functions don't perform any operation, and
exig only for compatibility with GNU Reedline,

get_history length
get _history length()

Returns the number of lines of higtory that are saved to the hitory file. When thereturned vaueislessthan O, al lines
in the history are saved.

parse and bind
par se_and_bi nd(readl i ne_cnd)

Gives Readline a configuration command. To let the user hit Tab to request completion, call parse_and_bind('tab:
complete’). Seethe GNU Readline documentation for other useful values of readline_cmd.

read_history file

read_history file(filenane
='~/.history")

http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
http://starship.python.net/crew/kernr/default.htm
http://newcenturycomputers.net/projects/readline.html
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html#Documentation
http://py-howto.sourceforge.net/curses/curses.html
http://newcenturycomputers.net/projects/wconio.html
http://www.effbot.org/efflib/console/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

10.9 Interactive Command Sessions

The cmd module offers asimple way to handle interactive sessons of commands. Each command isaline of text.
Thefirst word of each command isaverb defining the requested action. Therest of thelineis passed as an argument
to the method that implements the action that the verb requests.

Module cmd supplies class Cmd to use as a base class, and you define your own subclass of cmd.Cmd. The
subclass supplies methods with names starting with do_and help_, and may aso optiondly override some of Cmd's
methods. When the user enters acommand line such as verb and the rest, aslong as the subclass defines a method
named do_verb, Cmd.onecmd cdls:

sel f.do_verb('and the rest")

Similarly, aslong as the subclass defines amethod named help_verb, Cmd.do_help cdlsit when the command line
gartswith either 'help verb' or "?verb'. Cmd, by default, also shows suitable error messagesif the user triesto use,
or asksfor help about, averb for which the subclass does not define a needed method.

10.9.1 Methods of Cmd Instances

Aningtance c of asubclass of class Cmd supplies the following methods (many of these methods are meant to be
overridden by the subclass).

cmdloop
c. cmdl oop(i ntro=None)

Performs an entire interactive sesson of line-oriented commands. cmdloop starts by calling c.preloop(), then outputs
gring intro (c.intro, if intro isNone). Then c.cmdloop enters aloop. In each iteration of the loop, cmdloop readsline
swith ssraw_input(c.prompt). When standard input reaches end-of-file, cndloop sets s'EOF. If sisnot 'EOF,
cmdloop preprocesses string swith s=c.precmd(s), then calls flag=c.onecmd(s). When onecmd returns atrue value,
thisis atentative request to terminate the command loop. Now cmdloop calls flag=c.postcmd(flag,s) to check if the
loop should terminate. If flag is now true, the loop terminates, otherwise another iteration of the loop executes. If the
loop isto terminate, cdloop calls c.postioop(), then terminates. This structure of cmdloop is probably easiest to
understand by showing Python code equivaent to the method just described:
def cndl oop(sel f, intro=None):
sel f.preloop()
if introis None: intro = self.intro
print intro
whil e True:
try: s = raw_i nput(self.pronpt)
except EOFError: s = " ECF
el se: s = sel f.precnd(s)
flag = sel f.onecnd(s)
flag = sel f.postcnd(flag, s)
if flag: break
sel f.postloop()

cmdloop isagood example of the design pattern known as Template Method. Such amethod performslittle
substantia work itself; rather, it structures and organizes calsto other methods. Subclasses may override the other
methods, to define the details of class behavior within the overal framework thus established. When you inherit from
Cmd, you amost never override method cmdloop, since cmdloop's Structure is the main thing you get by subclassing
Cmd.

default

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

10.10 Inter nationalization

Most programs present some information to users as text. Such text should be understandable and acceptable to the
user. For example, in some countries and cultures, the date "March 7 can be concisaly expressed as"3/7".
Elsawhere, "3/7" indicates " duly 3", and the string that means"March 7" is"7/3". In Python, such cultura conventions
are handled with the help of standard modulelocae.

Smilarly, agreeting can be expressed in one natura language by the string "Benvenuti™, whilein another language the
gring to useis"Welcome'. In Python, such trandations are handled with the hel p of standard module gettext.

Both kinds of issues are commonly called internationalization (often abbreviated i18n, asthere are 18 |etters
between i and nin the full spelling). Thisisactually amisnomer, astheissues aso gpply to programs used within one
nation by users of different languages or cultures.

10.10.1 Thelocale M odule

Python's support for cultural conventionsis patterned on that of C, dightly smplified. In thisarchitecture, aprogram
operatesin an environment of cultura conventions known asalocale. The locale setting permeates the program and
istypicaly set early onin the program's operation. Thelocaleis not thread-specific, and module localeis not
thread-safe. In amultithreaded program, set the program's locale before starting secondary threads.

If aprogram does not call locale.setlocale, the program operatesin aneutrd locale known asthe C locale. The C
locaeis named from this architectures originsin the C language, and issimilar, but not identica, tothe U.S. English
locale. Alternatively, aprogram can find out and accept the user's default locale. In this case, module locae interacts
with the operating system (viathe environment, or in other system-dependent ways) to establish the user's preferred
locde. Finally, aprogram can set a specific locae, presumably determining which locaeto set on the basis of user
interaction, or via pergstent configuration settings such asaprogram initialization file.

A locale stting is normally performed across the board, for al relevant categories of cultural conventions. This
wide-spectrum setting is denoted by the congtant attribute LC_ALL of module locae. However, the cultura
conventions handled by module locale are grouped into categories, and in Some cases a program can choose to mix
and match categoriesto build up a synthetic composite locale. The categories are identified by the following constant
attributes of module locae:

LC_COLLATE

String sorting: affects functions streoll and strxfrminlocale
LC CTYPE

Character types. affects aspects of module string (and string methods) that have to do with letters, lowercase, and

uppercase
LC MESSAGES

Messages. may affect messages displayed by the operating system, for example function os.strerror and module

QOettext
LC_MONETARY

Formeatting of currency values: affects function locale.localeconv
LC_NUMERIC

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 11. Persistence and Databases

Python supports avariety of ways of making data persistent. One such way, known as seridization, involves viewing
the data as a collection of Python objects. These objects can be saved, or serialized, to a byte stream, and later
loaded and recreated, or deseriaized, back from the byte stream. Object persistence layers on top of seridization
and adds such features as object naming. This chapter covers the built-in Python modules that support seridization
and object persistence.

Another way to make data persstent isto store it in adatabase. One smple type of databaseis actudly just afile
format that uses keyed access to enable sdective reading and updating of relevant parts of the data. Python supplies
modules that support several variations of thisfile format, known as DBM, and these modules are covered in this
chapter.

A relationa database management system (RDBMYS), such as MySQL or Oracle, provides a more powerful
approach to storing, searching, and retrieving pers stent data. Relational databases rely on diaects of Structured
Query Language (SQL) to create and dter a database's schema, insert and update data in the database, and query
the database according to search criteria. This chapter does not provide any reference material on SQL. For that
purpose, | recommend SQL in aNutshell, by Kevin Kline (O'Rellly). Unfortunately, despite the existence of SQL
standards, no two RDBM Sesimplement exactly the same SQL diaect.

The Python standard library does not come with an RDBM Sinterface. However, many free third-party modules let
your Python programs access a specific RDBMS. Such modules mostly follow the Python Database AP 2.0
standard, also known asthe DBAPI. This chapter coversthe DBAPI standard and mentions some of the third-party
modulesthat implement it.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

11.1 Serialization

Python supplies a number of modulesthat deal with 1/0O operations that seridize (save) entire Python objectsto
various kinds of byte streams, and deseriaize (load and recreate) Python objects back from such streams.
Seridization isaso caled marshaling.

11.1.1 The marshal Module

The marsha module supports the specific serialization tasks needed to save and reload compiled Python files (.pyc
and .pyo). marshd only handlesinstances of fundamental built-in datatypes. None, numbers (plain and long integers,
float, complex), strings (plain and Unicode), code objects, and built-in containers (tuples, lists, dictionaries) whose
items are instances of elementary types. marshal does not handle instances of user-defined types, nor classes and
instances of classes. marshd isfaster than other seridization modules. Code objects are supported only by marshd,
not by other seridization modules. Module marshd suppliesthe following functions.

dump, dumps

dunp(val ue, fil eobj)
dunps(val ue)

dumps returns astring representing object value. dump writes the same string to file object fileobj, which must be
opened for writing in binary mode. dump(v,f) isjust like f.write(dumps(V)). fileobj cannot be afile-like object: it
must be an instance of typefile.

load, loads

| oad(fileobj)
| oads(str)

|oads creates and returns the object v previoudy dumped to string str, so that, for any object v of asupported type, v
equasloadg(dumps(Vv)). If str islonger than dumps(v), loads ignores the extra bytes. |oad reads the right number of
bytesfrom file object fileobj, which must be opened for reading in binary mode, and creates and returns the object v
represented by those bytes. fileobj cannot be afile-like object: it must be an instance of typefile.

Functions load and dump are complementary. In other words, a sequence of callsto |oad(f) deseridizes the same
vaues previoudy seridized when f's contents were created by a sequence of callsto dump(v,f). Objects that are
dumped and loaded in thisway can be instances of any mix of supported types.

Suppose you need to andyze severd text files, whose names are given as your program's arguments, and record
where each word appears in those files. The datayou need to record for each word isalist of (filename,
line-number) pairs. The following example uses marshd to encode lists of (filename, line-number) pairsas strings
and storethem in aDBM-likefile (as covered later in this chapter). Since those lists contain tuples, each made up of
adtring and anumber, they are within marsha's abilitiesto seridize.
i mport fileinput, marshal, anydbm
wordPos = { }
for line in fileinput.input():

pos = fileinput.filename(), fileinput.filelineno()

for word in line.split():

wor dPos. setdefaul t (word,[]).append(pos)

dbnmut = anydbm open(' i ndexfilem ,'n")

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

11.2 DBM Modules

A DBM-likefileisafilethat containsaset of pairs of strings (key,data), with support for fetching or storing the data
given akey, known as keyed access. DBM-likefileswere origindly supported on early Unix systems, with
functionality roughly equivalent to that of access methods popular on other mainframe and minicomputers of thetime,
such asISAM, the Indexed-Sequential Access Method. Today, severa different libraries, available for many
platforms, let programs written in many different languages creete, update, and read DBM-likefiles.

Keyed access, while not as powerful asthe data access functiondity of relationa databases, may often sufficefor a
program's needs. And if DBM-like files are sufficient, you may end up with a program thet is smaller, faster, and
more portable than one that usesan RDBMS.

The dassc dom library, whosefirst verson introduced DBM-like files many years ago, haslimited functiondity, but
tendsto be available on most Unix platforms. The GNU version, gdbm, isricher and also widespread. The BSD
verson, dbhash, offers superior functionality. Python supplies modules that interface with each of these librariesif the
relevant underlying library isingtalled on your system. Python also offersaminima DBM module, dumbdbm (usable
anywhere, asit does not rely on other installed libraries), and generic DBM modules, which are able to automaticaly
identify, select, and wrap the appropriate DBM library to ded with an existing or new DBM file. Depending on your
platform, your Python distribution, and what dom-like libraries you have ingtalled on your computer, the default
Python build may ingal some subset of these modules. In generd, at aminimum, you can rely on having module dom
on Unix-like platforms, module dbhash on Windows, and dumbdbm on any platform.

11.2.1 Theanydbm Module

The anydbm module is a generic interface to any other DBM module. anydbm supplies asingle factory function.
open

open(filename, flag="r', node
=0666)

Opensor creates the DBM file named by filename (astring that can denote any path to afile, not just aname), and
returns a suitable mapping object corresponding to the DBM file. When the DBM file aready exists, open uses
module whichdb to determine which DBM library can handle thefile. When open creastesanew DBM file, open
chooses the first available DBM modulein order of preference: dbhash, gdbm, dom, and dumbdbm.

flag isaone-character string that tells open how to open the file and whether to createit, asshownin Table 11-1.
mode is an integer that open uses asthe file's permission bitsif open createsthefile, as covered in Section 10.2.2in
Chapter 10. Not all DBM modules use flags and mode, but for portability's sake you should always supply
appropriate vaues for these arguments when you cal anydbm.open.

Table 11-1. flag vaues for anydbm.open

Flag Read-only? If fileexists If file doesnot exist

Cr yes open opensthefile open raises error

o~~~ R § PR o R .

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

11.3 The Berkeley DB Module

Python comes with the bsddb module, which wraps the Berkeley Database library (also known as BSD DB) if that
library isingtalled on your system and your Python ingtalation is built to support it. With the BSD DB library, you can
create hash, binary tree, or record-based files that generdly behave like dictionaries. On Windows, Python includes a
port of the BSD DB library, thus ensuring that module bsddb is always usable. To download BSD DB sources,
binariesfor other platforms, and detailed documentation on BSD DB, see hitp://mwww.d egpycat.com. Module bsddb
suppliesthree factory functions, btopen, hashopen, and rnopen.

btopen, hashopen, rnopen

bt open(fil ename, flag="r', *
many_ot her _opti onal _ar gunent s)
hashopen(fil ename, flag="r',*
many_ot her _opti onal _ar gunment s)
rnopen(filename, flag="r', *
many_ot her _opti onal _ar gunment s)

btopen opens or creates the binary tree format file named by filename (astring that denotes any path to afile, not
just aname), and returns a suitable BTree object to access and manipulate the file. Argument flag has exactly the
same vaues and meaning as for anydbm.open. Other arguments indicate low-level optionsthat alow fine-grained
control, but are rarely used.

hashopen and rnopen work the same way, but open or create hash format and record format files, returning objects
of type Hash and Record. hashopen is generdly the fastest format and makes sense when you are using keysto look
up records. However, if you aso need to access records in sorted order, use btopen, or if you need to access
recordsin the same order in which you originally wrote them, use rnopen. Using hashopen does not keep recordsin
order inthefile.

An object b of any of thetypes BTree, Hash, and Record can be indexed as a mapping, with both keys and values
congtrained to being strings. Further, b also supports sequentia access through the concept of a current record. b
suppliesthe following methods.

close

b.close()
Closes b. Cdl no other method on b after b.close().

first

b.first()

Sets b's current record to the first record, and returns a pair (key,value) for thefirst record. The order of recordsis
arbitrary, except for BTree objects, which ensure records are sorted in aphabetical order of their keys. b.first()
raises KeyError if bisempty.

has key

b. has_key(key)

http://www.sleepycat.com/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

11.4 The Python Database API (DBAPI) 2.0

As| mentioned earlier, the Python standard library does not come with an RDBM S interface, but there are many free
third-party modulesthat let your Python programs access specific databases. Such modules mostly follow the Python
Database AP 2.0 standard, also known asthe DBAPI.

At thetime of thiswriting, Python's DBAPI Specid Interest Group (SIG) was busy preparing anew version of the
DBAPI (possibly to be known as 3.0 when it isready). Programs written against DBAPI 2.0 should work with
minima or no changes with the future DBAP! 3.0, athough 3.0 will no doubt offer further enhancements that future
programswill be able to take advantage of .

If your Python program runs only on Windows, you may prefer to access databases by using Microsofts ADO
package through COM. For more information on using Python on Windows, see the book Python Programming on
Win32, by Mark Hammond and Andy Robinson (O'Reilly). Since ADO and COM are platform-specific, and this
book focuses on cross-platform use of Python, | do not cover ADO nor COM further in this book.

After importing a DBAPI-compliant module, you cal the modul€'s connect function with suitable parameters. connect
returns an ingtance of class Connection, which represents a connection to the database. This instance supplies commit
and rollback methodsto let you dedl with transactions, a close method to call as soon as you're done with the
database, and a cursor method that returns an instance of class Cursor. Thisinstance supplies the methods and
atributes that you'll usefor al database operations. A DBAPI-compliant module a so supplies exception classes,
descriptive attributes, factory functions, and type-description attributes.

11.4.1 Exception Classes

A DBAPI-compliant module supplies exception classes Warning, Error, and severa subclasses of Error. Warning
indicates such anomalies as data truncation during insertion. Error's subclasses indicate various kinds of errors that
your program can encounter when dealing with the database and the DBAPI-compliant module that interfacesto it.
Generdly, your code uses a statement of the form:

try:

except nodule.Error, err:

in order to trap al database-related errors that you need to handle without terminating.

11.4.2 Thread Safety

When a DBAPI-compliant module has an attribute threadsafety thet is greater than 0, the module is asserting some
specific leved of thread safety for database interfacing. Rather than relying on this, it's safer and more portable to
ensure that a single thread has exclusive access to any given externa resource, such as adatabase, asoutlined in

Chapter 14.
11.4.3 Parameter Style

A DBAP!-compliant module has an attribute paramstyle that identifies the style of markersto use as placeholdersfor
parameters. Y ou insert such markersin SQL statement strings that you pass to methods of Cursor instances, such as

mMmathnrd overt ta 11N ardor 101 1ea v intt me.Aotorrmi ned naranmatar vvaliioe S far ovamnl a that v 1 need 1o farrh tho

http://www.lemburg.com/files/Python/mxODBC.html
http://www.zope.org/Members/matt/dco2
http://www.object-craft.com.au/projects/mssql/default.htm
http://sourceforge.net/projects/mysql-python
http://initd.org/Software/psycopg
http://www.sapdb.org/sapdbapi.html
http://gadfly.sf.net/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 12. Time Operations

A Python program can handle time in severd ways. Time intervals are represented by floating-point numbers, in units
of seconds (afraction of asecond isthe fractiond part of theinterva). Particular ingtantsin time are expressed in
seconds since areference instant, known as the epoch. (Midnight, UTC, of January 1, 1970, isapopular epoch
used on both Unix and Windows platforms.) Time ingtants often also need to be expressed as amixture of units of
measurement (e.g., years, months, days, hours, minutes, and seconds), particularly for 1/0 purposes.

This chapter coversthe time module, which supplies Python's core time-handling functiondity. The time module
strongly depends on the system C library. The chapter aso presents the sched and calendar modules and the
essentids of the popular extension module mx.DateTime. mx.DateTime has more uniform behavior across platforms
than time, which helps account for its popularity.

Python 2.3 will introduce a new datetime module to manipulate dates and timesin other ways. At
http://starship.python.net/crew/jbauer/normal date/, you can download Jeff Bauer's normal Date.py, which gains
samplicity by dedling only with dates, not with times. Neither of these modulesis further covered in this book.

[TeamLiB]

http://starship.python.net/crew/jbauer/normaldate/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

12.1 Thetime Module

The underlying C library determines the range of dates that the time module can handle. On Unix systems, years
1970 and 2038 are the typical cut-off points, alimitation that mx.DateTimeletsyou avoid. Timeingants are normally
specified in UTC (Coordinated Universa Time, once known as GMT, or Greenwich Mean Time). Module time aso
supportslocd time zones and Daylight Saving Time (DST), but only to the extent that support is supplied by the
underlying C system library.

As an aternative to seconds since the epoch, atime instant can be represented by atuple of nineintegers known asa
time-tuple. Itemsin time-tuplesare covered in Table 12-1. All items areintegers, and therefore time-tuples cannot
keep track of fractions of a second. In Python 2.2 and later, the result of any function in module time that used to
return atime-tuple is now of type struct_time. Y ou can still usetheresult asatuple, but you can aso accessthe items
as read-only attributes x.tm_year, x.tm_mon, and so on, using the attribute nameslisted in Table 12-1. Wherever a
function used to require atime-tuple argument, you can now pass an instance of struct_time or any other sequence
whose items are nine integersin the applicable ranges.

Table 12-1. Tuple form of time representation

Item Meaning Field name Range Notes
Wider on some
0 Year tm year 1970-2038 il
} lisJanuary; 12is
1 Month t m non 1-12 5 her
2 Day t m nday 1-31
3 Hour t m_hour 0-23 Oismidnight; 12is
noon
4 Minute tmmn 0-59
5 Second t m sec 0-61 60 and 61 for leap
seconds
OisMonday; 6is
6 Weekday t m wday 0-6 S,
Day number within
! Year day t m yday 1-366 o
-1 meanslibrary

Q DST flan tmicdet 1to1)

http://aspn.activestate.com/ASPN/Python/Cookbook/Recipe/56036

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

12.2 The sched M odule

The sched module supplies a class that implements an event scheduler. sched supplies a scheduler class.
scheduler

cl ass schedul er (timefunc,
del ayfunc)

Aningance s of scheduler isinitiaized with two functions, which s then usesfor al time-related operations. timefunc
must be callable without argumentsto get the current timeingtant (in any unit of measure), meaning that you can pass
timetime. delayfunc must be callable with one argument (atime duration, in the same units timefunc returns), and it
should delay for about that amount of time, meaning you can passtime.deep. scheduler o cals delayfunc with
argument O after each event, to give other threads a chance; again, thisis compatible with the behavior of time.deep.

A scheduler instance s suppliesthe following methods.
cancel
s. cancel (event _t oken)

Removes an event from ss queue of scheduled events. event_token must be the result of aprevious cal to s.enter or
s.enterabs, and the event must not yet have happened; otherwise cancel raises RuntimeError.

empty
S.empty()

Returns Trueif s'squeue of scheduled eventsis empty, otherwise Fase.
enterabs

S. ent erabs(when, priority, func,
args)

Schedules afuture event (i.e., acalback to func(* args)) at time when. when is expressed in the same units of
measure used by thetimefunctionsof s. If severd events are scheduled for the same instant, s executesthemin
increasing order of priority. enterabs returns an event token t, which you may later passto s.cancel to cancd this
event.

enter

Ss.enter(delay, priority, func,
args)

Like enterabs, except that argument delay isardative time (the difference from the current ingtant, in the same units
of measure), while enterabss argument when is an absolute time (afuture instant).

run

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

12.3 The calendar Module

The calendar module supplies calendar-related functions, including functionsto print atext calendar for any given
month or year. By default, calendar considers Monday the first day of the week and Sunday the last one. Y ou can
change this setting by calling function calendar.setfirsweekday. caendar handles yearsin the range supported by
moduletime, typically 1970 to 2038. Module calendar supplies the following functions.

calendar
cal endar (year , w=2, | =1, c=6)

Returnsamulltiline string with acaendar for year year formatted into three columns separated by ¢ spaces. w isthe
width in characters of each date; each line haslength 21* w+18+2* c. | isthe number of lines used for each week.

firstweekday
firstweekday()

Returns the current setting for the weekday that starts each week. By default, when calendar isfirst imported, thisis
0, meaning Monday.

isleap
i sl eap(year)
Returns Trueif year isaleap year, otherwise False.
leapdays
| eapdays(y1,y2)
Returnsthe total number of legp daysin the yearsin range(yl,y2).
month
nmont h(year , mont h, w=2, | =1)

Returns amultiline string with acadendar for month month of year year, one line per week plus two header lines. wis
the width in characters of each date; each line haslength 7* w+6. | isthe number of linesfor each week.

monthcalendar
mont hcal endar (year , nont h)

Returnsalist of lists of integers. Each sublist represents aweek. Days outside month month of year year are
represented by a placeholder value of O; days within the given month are represented by their dates, from 1 on up.

mnnthranncao

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

12.4 The mx.DateTime Module

DateTimeis one of the modulesin the mx package made available by eGenix GmbH. mx is open source, and at the
time of thiswriting, mx.DateTime haslibera license conditions smilar to those of Pythonitsdf. mx.DateTime's
popularity semsfrom itsfunctiona richness and cross-platform portability. | present only an essentia subset of
mx.DateTime'srich functiondity here; the module comes with detailed documentation about its advanced time and
date handling features.

12.4.1 Date and Time Types

Module DateTime supplies several date and time types whose instances are immutable (and therefore suitable as
dictionary keys). Type DateTime represents atime instant and includes an absolute date, which isthe number of days
since an epoch of January 1, year 1 CE, according to the Gregorian caendar (0001-01-01 isday 1), and an
absolute time, which is afloating-point number of seconds since midnight. Type DateTimeDedta represents an interva
of elgpsed time, which is afloating-point number of seconds. Class RdlativeDateTime lets you specify datesin
relative terms, such as"next Monday" or "first day of next month." DateTime and DateTimeDeltaare covered in
detal later in this section, but RelativeDateTimeis not.

Date and time types supply customized string conversion, invoked viathe built-in str or automatically during implicit
converson (eg., inaprint satement). The resulting strings are in standard 1SO 8601 formats, such as.

YYYY- Mk DD HH: MM SS. ss

For finer-grained control of string formatting, use method gtrftime. Function DateTimeFrom congtructs DateTime

ingtances from strings. Submodules of module mx.DateTime supply other formatting and parsing functions, using
different standards and conventions.

12.4.2 The DateTime Type

Module DateTime supplies factory functionsto build instances of type DateTime, which in turn supply methods,
atributes, and arithmetic operators.

12.4.2.1 Factory functionsfor DateTime

Module DateTime supplies many factory functionsthat produce DateTime instances. Severd of these factory
functions can aso be invoked through synonyms. The most commonly used factory functions are the following.

DateTime, Date, Timestamp

Dat eTi ne(year , mont h=1, day=1,
hour =0, m nut e=0, second=0. 0)

Creates and returns a DateTime instance representing the given absolute time. Date and Timestamp are synonyms of
DaeTime. day can be lessthan 0 to denote days counted from the end of the month: -1 isthe last day of the month,
-2 the next to last day, and so on. For example:

print nx. DateTi ne. Dat eTi ne(2002, 12, -1)
prints: 2002-12-31 00:00: 00. 00

second isafloating-point vaue and can include an arbitrary fraction of asecond.

MNAatraT i Al vrAara T rmvAacsed Arvasl v Al

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 13. Controlling Execution

Python directly exposes many of the mechanismsit usesinterndly. This helps you understand Python at an advanced
level, and means you can hook your own code into such documented Python mechanisms and control those
mechanisms to some extent. For example, Chapter 7 covered the import statement and the way Python arranges for
built-insto be made implicitly visible. This chapter covers other advanced techniques that Python offersfor controlling
execution, while Chapter 17 covers execution-control possibilities that spply specificaly to the three crucial phases of
development: testing, debugging, and profiling.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

13.1 Dynamic Execution and the exec Statement

With Python's exec statement, it is possible to execute code that you read, generate, or otherwise obtain during the
running of aprogram. The exec statement dynamically executes astatement or asuite of statements. execisasmple
keyword statement with the following syntax:

exec code[in globals[,locals]]

code can be astring, an open file-like object, or acode object. globals and locals are dictionaries. If both are
present, they are the globa and local namespaces, respectively, in which code executes. If only globals is present,
exec uses globals in therole of both namespaces. If neither globals nor locals is present, code executesin the
current scope. Running exec in current scope is not good programming practice, Snceit can bind, rebind, or unbind
any name. To keep things under control, you should use exec only with specific, explicit dictionaries.

13.1.1 Avoiding exec

More generaly, use exec only when it'sredly indispensable. Most often, it is better avoided in favor of more specific
mechanisms. For example, afrequently asked questionis, "How do | set avariable whose namel just read or
congtructed?' Strictly speaking, exec lets you do this. For example, if the name of the variable you want to setisin
variable varname, you might use:

exec varnanme+' =23'

Don't do this. An exec statement like thisin current scope causes you to lose control of your namespace, leading to
bugsthat are extremely hard to track and more generaly making your program unfathomably difficult to understand.
Animprovement isto keep the"variables' you need to s, not as variables, but asentriesin adictionary, say mydict.
Y ou can then use the following variation:

exec varname+' =23' in nydict

Whilethisis not asterrible asthe previous example, it isstill abad idea. The best approach isto keep such
"variables' asdictionary entriesand not use exec a dl to set them. You can just use:
nydi ct [var name] = 23

With this approach, your program is clearer, more direct, more elegant, and faster. While there are valid uses of
exec, they are extremely rare and they should always use explicit dictionaries.

13.1.2 Restricting Execution

If the globa namespaceisadictionary without key ' builtins ', exec implicitly addsthat key, referring to module
__builtin__ (or to the dictionary thereof), as covered in Chapter 8. If the globa namespace dictionary hasakey '
_builtins__" and the value doesn't refer to thereal module __builtin__, code's execution is restricted, as covered in
the upcoming section Section 13.2.

13.1.3 Expressions
EXEC Can execute an expression because any expression isaso avalid satement (called an expression statement).

However, Python ignores the vaue returned by an expression statement in this case. To evaluate an expression and
obtain the expression's value, see built-in function eva, covered in Chapter 8.

13.1.4 Compile and Code Objects

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

13.2 Restricted Execution

Python code executed dynamicaly normally suffers no specia restrictions. Python's genera philosophy isto givethe
programmer tools and mechanisms that make it easy to write good, safe code, and trust the programmer to use them
appropriately. Sometimes, however, trust might not be warranted. When code to execute dynamically comes from an
untrusted source, the code itsdlf is untrusted. In such casesit'simportant to selectively redtrict the execution
environment so that such code cannot accidentaly or maicioudy inflict damage. If you never need to execute
untrusted code, you can skip this section. However, Python makesit easy to impose gppropriate restrictions on
untrusted codeif you ever do need to executeit.

Whenthe__huiltins__itemin the globa namespaceisn't the standard __builtin__ module (or the latter's
dictionary), Python knows the code being run isrestricted. Restricted code executesin a sandbox environment,
previoudy prepared by the trusted code, that requests the restricted code's execution. Standard modules rexec and
Bastion help you prepare an appropriate sandbox. To ensure that restricted code cannot escape the sandbox, afew
crucid internals (eg., the __dict _ attributes of modules, classes, and instances) are not directly availableto
restricted code.

Thereisno specia protection againg restricted code raising exceptions. On the contrary, Python diagnoses any
attempt by restricted code to violate the sandbox restrictions by raising an exception. Therefore, you should generdly
run restricted code in the try clause of atry/except statement, as covered in Chapter 6. Make sure you catch all
exceptions and handle them appropriately if your program needs to keep running in such cases.

Thereisno built-in protection againgt untrusted code attempting to inflict damage by consuming large amounts of
memory or time (so-called denia-of-service atacks). If you need to ward against such attacks, you can run untrusted
code in aseparate process. The separate process uses the mechanisms described in this section to restrict the
untrusted code's execution, while the main process monitors the separate one and terminates it if and when resource
consumption becomes excessve. Processes are covered in Chapter 14. Resource monitoring is currently supported
by the standard Python library only on Unix-like platforms (by platform-specific module resource), and this book
coversonly cross-platform Python.

Asafina note, you need to know that there are known, exploitable security weaknessesin the restricted-execution

mechaniams, even in the most recent versions of Python. Although restricted execution is better than nothing, at the
time of thiswriting there are no known ways to execute untrusted code that are suitable for security-critica Stuations.

13.2.1 Therexec Module

The rexec module supplies the RExec class, which you can ingtantiate to prepare atypicd restricted-execution
sandbox environment in which to run untrusted code.

RExec

cl ass RExec(hooks=None, verbose
=Fal se)

Returns an instance of the RExec class, which corresponds to a new restricted-execution environment, also known as
asandbox. hooks, if not None, lets you exert fine-grained control on import statements executed in the sandbox.
Thisisan advanced and rarely used functiondity, and | do not cover it further in this book. verbose, if true, causes
additional debugging output to be sent to standard output for many kinds of operationsin the sandbox.

13.2.1.1 Methods

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] o=
13.3 Internal Types

Some of theinternal Python objectsthat | mention in this section are hard to use. Using such objects correctly
requires some study of Python's own C (or Java) sources. Such black magic israrely needed, except to build
generd-purpose devel opment frameworks and similar wizardly tasks. Once you do understand things in depth,
Python empowers you to exert control, if and when you need to. Since Python exposesinterna objectsto your
Python code, you can exert that control by coding in Python, even when anodding acquaintance with C (or Java) is
needed to understand what is going on.

13.3.1 Type Objects

The built-in type named type acts as afactory object, returning objectsthat are types themsalves (type was a built-in
function in Python 2.1 and earlier). Type objects don't need to support any special operations except equality
comparison and representation as strings. Most type objects are callable, and return new instances of the type when
cdled. In particular, built-in types such asint, float, list, tr, tuple, and dict al work thisway. The attributes of the
types module are the built-in types, each with one or more names. For example, types.DictType and
types.Dictionary Type both refer to type({ }), dso known since Python 2.2 as the built-in type dict. Besides being
callable to generate instances, type objects are useful in Python 2.2 and later because you can subclass them, as
coveredin Chapter 5.

13.3.2 The Code Object Type

Aswdl as by using built-in function compile, you can aso get acode object viathe func_code attribute of afunction
or method object. A code object'sco_varnames ttribute is the tuple of names of local variables, including the formal
arguments; the co_argcount attribute is the number of arguments. Code objects are not callable, but you can rebind
the func_code attribute of a compatible function object in order to wrap a code object into calable form. Module
new supplies afunction to create a code object, aswell as other functionsto create instances, classes, functions,
methods, and modules. Such needs are both rare and advanced, and are not covered further in this book.

13.3.3 Theframe Type

Function _getframein module sys returns aframe object from Python's cal stack. A frame object has attributes that
supply information about the code executing in the frame and the execution state. M odul es traceback and inspect
help you access and display information, particularly when an exception is being handled. Chapter 17 provides more
information about frames and tracebacks.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

13.4 Garbage Collection

Python's garbage collection normally proceeds transparently and automaticaly, but you can choose to exert some
direct control. The generd principleisthat Python collects each object x a some time after x becomes unreachable,
that is, when no chain of references can reach x by starting from aloca variable of afunction that is executing, nor
from aglobal variable of aloaded module. Normaly, an object x becomes unreachable when there are no references
at dl to x. However, agroup of objects can aso be unreachable when they reference each other.

Classic Python keepsin each object x a count, known as a reference count, of how many referencesto x are
outstanding. When x's reference count dropsto 0, CPython immediately collects x. Function getrefcount of module
sys accepts any object and returns its reference count (at least 1, since getrefcount itself has areference to the object
it'sexamining). Other versons of Python, such as Jython, rely on different garbage collection mechanisms, supplied
by the platform they run on (e.g., the VM). Modules gc and weakref therefore apply only to CPython.

When Python garbage-collects x and there are no references at dl to x, Pythonthenfindizesx (i.e, calsx.__dd

_()) and makes the memory that x occupied availablefor other uses. If x held any references to other objects,
Python removes the references, which in turn may make other objects collectable by leaving them unreachable.

13.4.1 The gc Module

The gc module exposes the functionality of Python's garbage collector. gc deals only with objectsthat are
unreachable in a subtle way, being part of mutua reference loops. In such aloop, each object in the loop refersto
others, keeping the reference counts of all objects positive. However, an outside reference no longer existsto the
whole set of mutually referencing objects. Therefore, the whole group, aso known as cyclic garbage, is unreachable,
and therefore garbage collectable. Looking for such cyclic garbage loops takes time, which iswhy module gc exigts.

gc exposes functions you can use to help you keep garbage collection times under control. These functions can
sometimes help you track down amemory |leak—objectsthat are not getting collected even though there should be
no more references to them—~Dy letting you discover what other objects arein fact holding on to referencesto them.

collect
collect()
Forcesafull cydlic collection run to happen immediatedly.
disable
di sable()
Suspends automatic garbage collection.
enable
enable()

Re-enables automatic garbage collection previoudy suspended with disable.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

13.5 Termination Functions

The atexit module lets you register termination functions (i.e., functionsto be called a program termination, last in,
firgt out). Termination functions are smilar to clean-up handlers established by try/finaly. However, termination
functionsare globally registered and called at the end of the whole program, while clean-up handlers are established
lexically and called at the end of a specific try clause. Both termination functions and clean-up handlers are called
whether the program terminates normally or abnormally, but not when the termination is caused by calling os._exit.
Module atexit suppliesasingle function caled regiger.

register
regi ster(func, *args, **kwds)

Ensuresthat func(* args,* *kwds) is called at program termination time.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

13.6 Siteand User Customization

Python provides a specific hook to let each site customize some aspects of Python's behavior at the start of each run.
Customization by each single user is not enabled by default, but Python specifies how programs that want to run
user-provided code at startup can explicitly request such customization.

13.6.1 The site and sitecustomize M odules

Python loads standard module site just before the main script. If Python is run with option -S, Python does not load
ste. -Sdlowsfagter startup, but saddles the main script with initialization chores. Ste'stasks are:

1.

Putting sys.path in standard form (absol ute paths, no duplicates).

Interpreting each .pth file found in the Python home directory, adding entriesto sys.path, and/or importing
modules, as each .pth fileindicates.

Adding built-ins used to display information in interactive sessons (quit, exit, copyright, credits, and license).

Setting the default Unicode encoding to 'ascii’. Sit€'s source code includes two blocks, each guarded by if O,
oneto set the default encoding to be locale dependent, and the other to disable default encoding and
decoding between Unicode and plain strings. Y ou may optiondly edit site.py to select either block.

Trying to import Sitecustomize (should import Sitecustomize raise an ImportError exception, Ste catches and
ignoresit). Stecustomize is the module that each site'singtallation can optionaly use for further Ste-specific
customization beyond site'stasks. It isgeneraly best not to edit site.py, as any Python upgrade or
reingtallation might overwrite your customizations. Stecustomize's main task is often to set the correct default
encoding for the site. Western European sites, for example, may chooseto cdll
sys.setdefaultencoding(iso-8859-1).

After Stecustomize is done, removing from module sys the attribute sys.setdefaultencoding.

Thus, Python's default Unicode encoding can be set only at the start of arun, not changed in midstream during the
run. In an emergency, if aspecific main script desperately needsto break this guiddine and set a different default
encoding from that used by dl other scripts, you may place the following snippet at the start of the main script:

i mport sys # get the sys nodul e object

rel oad(sys) # restore nodul e sys from di sk
sys. setdef aul t encodi ng(' i so-8859-15") # or whatever codec you need

del sys. setdefaul tencoding # ensure agai nst | ater accidents

However, thisis not good style. Y ou should refactor your script so that it can accept whatever default encoding the

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 14. Threads and Processes

A thread isaflow of control that shares globa state with other threads; dl threads appear to execute smultaneoudly.
Threads are not easy to master, but once you do, they may offer asimpler architecture or better performance (faster
response, but typically not better throughput) for some problems. This chapter coversthe facilitiesthat Python
providesfor dedling with threads, including the thread, threading, and Queue modules.

A process isan ingance of arunning program. Sometimes you get better results with multiple processes than with
threads. The operating system protects processes from one another. Processes that want to communicate must
explicitly arrange to do so, vialocd inter-process communication (IPC). Processes may communicate viafiles
(coveredin Chapter 10) or viadatabases (covered in Chapter 11). In both cases, the general way in which
processes communicate using such data storage mechanismsis that one process can write data, and another process
can later read that data back. This chapter coversthe process-related parts of module os, including smple IPC by
means of pipes, and a cross-platform IPC mechanism known as memory-mapped files, supplied to Python programs
by module mmap.

Network mechanisms are well suited for IPC, asthey work between processes that run on different nodes of a
network aswell as those that run on the same node. Chapter 19 coverslow-level network mechanismsthat provide
aflexible bassfor IPC. Other, higher-level mechanisms, known as distributed computing, such as CORBA,
DCOM/COM+, EJB, SOAP, XML-RPC, and .NET, make | PC easier, whether locally or remotely. However,
distributed computing is not covered in this book.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

14.1 Threadsin Python

Python offers multithreading on platforms that support threads, such asWin32, Linux, and most variants of Unix. The
Python interpreter does not freely switch threads. Python uses aglobal interpreter lock (GIL) to ensure that switching
between threads happens only between bytecode instructions or when C code ddliberately releasesthe GIL
(Python's C code releases the GIL around blocking I/O and deep operations). An action is said to be atomic if it's
guaranteed that no thread switching within Python's process occurs between the start and the end of the action. In
practice, an operation that |ooks atomic actualy is atomic when executed on an object of abuilt-in type (augmented
assgnment on an immutable object, however, isnot atomic). However, in generd it isnot agood ideato rely on
atomicity. For example, you never know when you might be dealing with a derived class rather than an object of a
built-in type, meaning there might be callbacks to Python code.

Python offers multithreading in two different flavors. An older and lower-level module, threed, offers abare minimum
of functiondity, and is not recommended for direct use by your code. The higher-level module threading, built on top
of thread, was loosdly inspired by Javas threads, and is the recommended tool. The key designissuein
multithreading systemsis most often how best to coordinate multiple threads. threading therefore supplies severa
synchronization objects. Module Queueis very useful for thread synchronization asit supplies asynchronized FIFO
queuetype, which is extremely handy for communication and coordination between threads.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

14.2 Thethread M odule

The only part of the thread module that your code should use directly isthe lock objects that module thread supplies.
L ocks are smple thread-synchronization primitives. Technicaly, thread's locks are non-reentrant and unowned: they
do not keep track of what thread last locked them, so there is no specific owner thread for alock. A lock isin one of
two states, locked or unlocked.

To get anew lock object (in the unlocked state), cdl the function named alocate |ock without arguments. This
function is supplied by both modules thread and threading. A lock object L supplies three methods.

acquire
L. acqui re(wait =Tr ue)

When wait is True, acquirelocks L. If L isaready locked, the calling thread suspends and waits until L isunlocked,
then locks L. Eveniif the calling thread was the one that |ast locked L, it still suspends and waits until another thread
releases L. When wait isFalse and L isunlocked, acquirelocks L and returns True. When wait isFalseand L is
locked, acquire does not affect L, and returns False.

locked

L.l ocked()

Returns Trueif L islocked, otherwise False.
release

L.rel ease()

Unlocks L, which must be locked. When L islocked, any thread may call L.release, not just the thread that last
locked L. When more than onethread iswaiting on L (i.e., has called L.acquire, finding L locked, and is now waiting
for L to be unlocked), release wakes up an arbitrary waiting thread. The thread that callsrelease is not suspended: it
remains ready and continues to execute.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

14.3 The Queue Module

The Queue module suppliesfirg-in, first-out (FIFO) queues that support multithread access, with one main classand
two exception classes.

Queue
cl ass Queue(maxsi ze=0)

Queueisthe main classfor module Queue and is covered in the next section. When maxsize is greater than 0, the
new Queueingtance g isdeemed full when g has maxsize items. A thread inserting an item with the block option,
when q isfull, suspends until another thread extracts an item. When maxsize islessthan or equal to 0, gisnever
consdered full, and islimited in Sze only by available memory, like norma Python containers.

Empty

Empty isthe class of the exception that g.get(False) raises when qisempty.

Full

Full isthe class of the exception that g.put(x,False) raiseswhen qisfull.

Aningtance q of class Queue suppliesthe following methods.
empty
q.empty()
Returns Trueif g isempty, otherwise False.
full
q.full()
Returns Trueif g isfull, otherwise Fase.
get, get_nowait
g. get (bl ock=Tr ue)

When block is False, get removes and returns an item from q if oneisavailable, otherwise get raises Empty. When
block is True, get removes and returns an item from q, suspending the caling thread, if need be, until anitemis
available. g.get_nowait() islike q.get(False). get removes and returnsitemsin the same order as put inserted them
(firgtin, first out).

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

14.4 Thethreading Module

The threading moduleis built on top of module thread and supplies multithreading functionality in amore usable form.
The general approach of threading issimilar to that of Java, but locks and conditions are modeled as separate objects
(in Java, such functionality is part of every object), and threads cannot be directly controlled from the outside
(meaning there are no priorities, groups, destruction, or stopping). All methods of objects supplied by threading are
atomic.

threading provides numerous classes for dedling with threads, including Thread, Condition, Event, RLock, and
Semaphore. Besides factory functionsfor the classes detailed in the following sections of this chapter, threading
suppliesthe currentThread factory function.

currentThread

current Thread()

Returns a Thread object for the calling thread. If the calling thread was not created by module threading,
currentThread creates and returns a semi-dummy Thread object with limited functiondity.

14.4.1 Thread Objects

A Thread object t models athread. Y ou can pass t's main function as an argument when you creste t, or you can
subclass Thread and override the run method (you may dso override _init__, but should not override other
methods). t isnot ready to run when you cregteit: to make t ready (active), cal t.start(). Once t isactive, it
terminates when its main function ends, either normally or by propagating an exception. A Thread t can be a daemon,
meaning that Python can terminate eveniif t isgtill active, while anormd (non-daemon) thread keeps Python dive
until the thread terminates. Class Thread exposes the following constructor and methods.

Thread

cl ass Thread(name=None, t ar get
=None, args=(), kwargs={ })

Always cdl Thread with named arguments: the number and order of forma arguments may change in the future, but
the names of existing arguments are guaranteed to stay. When you ingtantiate class Thread itself, you should specify
target: t.runcdlstarget (* args,** kwargs). When you subclass Thread and override run, you normaly don't specify
target. In ether case, execution doesn't begin until you cal t.start(). nameist'sname. If name isNone, Thread
generatesaunique namefor t. If asubclass T of Thread overrides__init._ , T. _init _mustcal Thread. _init_
on sdf before any other Thread method.

getName, setName

t.getNane()
t. set Nane(hane)

getNamereturns t's name, and setName rebinds t's name. The name string is arbitrary, and a thread's name need not
be unique among threads.

isAlive

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

14.5 Threaded Program Architecture

A threaded program should always arrange for asingle thread to deal with any given object or subsystem that is
externd to the program (such as afile, adatabase, a GUI, or anetwork connection). Having multiple threads that
dedl with the same externa object can often cause unpredictable problems.

Whenever your threaded program must deal with some externd object, devote a thread to such dealings, using a
Queue object from which the external-interfacing thread gets work requests that other threads post. The
externd-interfacing thread can return results by putting them on one or more other Queue objects. Thefollowing
example shows how to package this architecture into agenerd, reusable class, assuming that each unit of work on
the external subsystem can be represented by a callable object:
i mport Threadi ng, Queue
class External I nterfaci ng(Threadi ng. Thread) :
def _ init_ (self, external Callable, **kwds):
Threadi ng. Thread. _ _init_ _(self, **kwds)
sel f. set Daenon(1)
sel f.external Call able = external Cal |l abl e
sel f. wor kRequest Queue = Queue. Queue()
sel f.result Queue = Queue. Queue()
self.start()
def request(self, *args, **kwds):
"call ed by other threads as external Call abl e woul d be"
sel f. wor kRequest Queue. put ((args, kwds))
return self.resultQueue.get()
def run(self):
while 1:
args, kwds = sel f.workRequest Queue. get()

sel f.resul t Queue. put (sel f. external Cal | abl e(*args, **kwds))

Once some Externd Interfacing object e isingtantiated, dl other threads may now cal & .request just like they would
cal someExternal Callable without such amechanism (with or without arguments as appropriate). The advantage of
the ExterndInterfacing mechanismisthat dl cals upon someExter nal Callable are now seriaized. Thismeansthey
are performed by just one thread (the thread object bound to &) in some defined sequentia order, without overlap,
race conditions (hard-to-debug errors that depend on which thread happensto get therefirst), or other anomalies
that might otherwise result.

If several callables need to be seridized together, you can passthe callable as part of the work request, rather than
passng it a theinitiaization of class ExterndInterfacing, for greater generdity. Thefollowing example showsthis
more general approach:

i mport Threadi ng, Queue
class Serializer(Threadi ng. Thread):
def _ _init_ _(self, **kwds):
Threadi ng. Thread. _ _init_ _(self, **kwds)
sel f. set Daenon(1)
sel f. wor kRequest Queue = Queue. Queue()
sel f.resul t Queue = Queue. Queue()
self.start()
def apply(self, callable, *args, **kwds):
"call ed by other threads as call able would be"
sel f. wor kRequest Queue. put ((cal | abl e, args, kwds))
return self.resultQueue.get()
def run(self):
while 1:
cal l able, args, kwds = self.workRequest Queue. get()

sel f.resul t Queue. put (cal | abl e(*args, **kwds))

Once aSeidizer object s has been ingantiated. other threads may cal sar .applv(someExternal Callable) just like

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

14.6 Pr ocess Environment

The operating system supplies each process P with an environment, which isa set of environment variables whose
names are identifiers (mogt often, by convention, uppercase identifiers) and whose contents are strings. For example,
in Chapter 3, we covered environment variables that affect Python's operations. Operating system shells offer various
ways to examine and modify the environment, by such means as shell commands and others mentioned in Chapter 3.

The environment of any process P isdetermined when P gtarts. After startup, only P itsdf can change P's
environment. Nothing that P does affects the environment of P's parent process (the process that started P), nor
those of child processes previoudy started from P and now running, nor of processes unrelated to P. Changesto P's
environment affect only P itsdlf: the environment is not ameans of 1PC. Child processes of P normally get acopy of P
'senvironment astheir garting environment: in this sense, changesto P's environment do affect child processesthat P
dtarts after such changes.

Module os supplies attribute environ, amapping that represents the current processs environment. os.environis
initialized from the process environment when Python starts. Changes to os.environ update the current processs
environment if the platform supports such updates. Keys and valuesin os.environ must be strings. On Windows, but
not on Unix-like platforms, keysinto os.environ are implicitly uppercased. For example, heré's how to try to
determine what shell or command processor you're running under:

i mport os

shell = os.environ. get (' COVBPEC)

if shell is None: shell = os.environ.get('SHELL')

if shell is None: shell = 'an unknown conmand processor'

print 'Runni ng under', shell

If aPython program changes its own environment (e.g., viaos.environ['X']="Y"), this does not affect the environment
of the shell or command processor that started the program. Like in other cases, changes to a process's environment
affect only the processitsdf, not others.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

14.7 Running Other Programs

The os module offers severa waysfor your program to run other programs. The smplest way to run another
program isthrough function os.system, athough this offers no way to control the externa program. The os module

a so provides anumber of functions whose names start with exec. These functions offer fine-grained control. A
program run by one of the exec functions, however, replaces the current program (i.e., the Python interpreter) in the
same process. In practice, therefore, you use the exec functions mostly on platforms that |et a process duplicate itself
by fork (i.e., Unix-like platforms). Findly, os functions whose names start with spawn and popen offer intermediate
smplicity and power: they are cross-platform and not quite as Smple as system, but smple and usable enough for
MOSt purposes.

The exec and spawn functions run a specified executable file given the executabl e fil€'s path, argumentsto passto it,
and optiondly an environment mapping. The system and popen functions execute acommand, astring passed to a
new instance of the platform's default shell (typicaly /bin/sh on Unix, command.com or cmd.exe on Windows). A
command isamore genera concept than an executablefile, asit can include shell functionality (pipes, redirection,
built-in shell commands) using the norma shell syntax specific to the current platform.

execl, execle, execlp, execv, execve,
EXECVP, EXECVpe

execl (path, *args)
execl e(pat h, *args)
execl p(path, *args)
execv(path, args)
execve(path, args, env)
execvp(path, args)
execvpe(path, args, env)

These functions run the executable file (program) indicated by string path, replacing the current program (i.e., the
Python interpreter) in the current process. The distinctions encoded in the function names (after the prefix exec)
control three aspects of how the new program isfound and run:

Does path have to be acomplete path to the program's executablefile, or can the function also accept just a
name asthe path argument and search for the executable in saverd directories, like operating system shells
do? execlp, execvp, and execvpe can accept a path argument thet is just afilename rather than acomplete
path. In this case, the functions search for an executablefile of that name along the directorieslisted in
os.environ['PATH']. The other functions require path to be a complete path to the executable file for the new

program.

Are argumentsfor the new program accepted as a sSingle sequence argument args to the function or as
separate arguments to the function? Functions whose names start with execv take asingle argument args that
IS the sequence of the arguments to use for the new program. Functions whose names start with execl take
the new program's arguments as separate arguments (execle, in particular, usesitslast argument asthe
environment for the new program).

Isthe new program'’s environment accepted as an explicit mapping argument env to the function, or is
os.environimplicitly used? execle, execve, and execvpe take an argument env that isamapping to be used
asthe new proagram's environment (kevs and values must be strings). while the other functions use os.environ

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

14.8 The mmap Module

The mmap module supplies memory-mapped file objects. An mmap object behaves smilarly to aplain (not Unicode)
string, so you can often pass an mmap object where aplain string is expected. However, there are differences:.

An mmap object does not supply the methods of a string object

An mmap object ismutable, while string objects areimmutable

An mmap object aso corresponds to an open file and behaves polymorphically to a Python file object (as
coveredin Chapter 10)

An mmap object m can beindexed or diced, yidding plain strings. Since m ismutable, you can dso assgnto an
indexing or dicing of m. However, when you assign to adice of m, the right-hand side of the assgnment statement
must be astring of exactly the same length as the dice you're assgning to. Therefore, many of the useful tricks
availablewith list dice assignment (covered in Chapter 4) do not apply to mmap dlice assgnment.

Module mmap supplies afactory function that is different on Unix-like systems and Windows.
mmap

mvap(fil edesc, | ength, t agnane
=") # W ndows
mvap(fil edesc, length, flags
=MAP_SHARED,
pr ot =PROT_READ| PROT_WRI TE)
Uni x

Creates and returns an mmap object m that mapsinto memory thefirst length bytes of thefileindicated by file
descriptor filedesc. filedesc must normally be afile descriptor opened for both reading and writing (except, on
Unix-like platforms, when argument prot requests only reading or only writing). File descriptors are covered in
Section 10.2.8. To get an mmap object m that refersto a Python file object f, use m=mmap.mmap(f .fileno(),length).

On Windows only, you can pass a string tagname to give an explicit tag name for the memory mapping. Thistag
name lets you have saverd memory mappings on the samefile, but thisfunctiondity isrardly necessary. Caling mmap
with only two arguments has the advantage of keeping your code portable between Windows and Unix-like
platforms. On Windows, all memory mappings are readable and writable and shared between processes, so that all
processes with amemory mapping on afile can see changes made by each such process.

On Unix-like platforms only, you can pass mmap.MAP_PRIVATE asthe flags argument to get amapping that is
private to your process and copy-on-write. mmap.MAP_SHARED, the default, gets amapping that is shared with
other processes, so that al processes mapping the file can see changes made by one process (same as on Windows).
Y ou can pass mmap.PROT_READ asthe prot argument to get amapping that you can only read, not write. Passing
mmap.PROT WRITE gets amapping that vou can only write not read. The bitwise-OR

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 15. Numeric Processing

In Python, you can perform numeric computations with operators (as covered in Chapter 4) and built-in functions (as
covered in Chapter 8). Python also provides the math, cmath, operator, and random modules, which support
additional numeric computation functionality, as documented in this chapter.

Y ou can represent arrays in Python with lists and tuples (covered in Chapter 4), aswell aswith the array standard
library module, which is covered in this chapter. Y ou can a so build advanced array manipulation functionswith
loops, list comprehensions, iterators, generators, and built-ins such as map, reduce, and filter, but such functions can
be complicated and dow. Therefore, when you processlarge arrays of numbersin these ways, your program's
performance can be below your machingsfull potential.

The Numeric package addresses these issues, providing high-performance support for multidimensiona arrays
(matrices) and advanced mathematical operations, such aslinear dgebraand Fourier transforms. Numeric does not
come with standard Python distributions, but you can freely download it at http://sourceforge.net/projectsnumpy,
ether as source code (which iseasy to build and ingtal on many platforms) or as a prebuilt self-ingtaling .exe filefor
Windows. Vist http:/Amww.pfdubois.com/numpy/ for an extensive tutorial and other resources, such asamailing list
about Numeric. Note that the Numeric packageis not just for numeric processing. Much of Numeric is about
multidimensiond arrays and advanced array handling that you can use for any Python sequence.

Numericisalarge, rich package. For full understanding, study the tutorial, work through the examples, and
experiment interactively. This chapter presents areference to an essentid subset of Numeric on the assumption that
you dready have some grasp of array manipulation and numeric computing issues. If you are unfamiliar with this
subject, the Numeric tutoria can help.

[TeamLiB]

http://sourceforge.net/projects/numpy

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

15.1 The math and cmath M odules

The math module supplies mathematica functions on floating-point numbers, while the cmath module supplies
equivaent functions on complex numbers. For example, math.sgrt(-1) raises an exception, but cmath.sgrt(-1) returns

1.
Each module a so exposes two attributes of type float bound to the values of fundamental mathematical congtants, pi
ande.

acos math and cmath

acos(Xx)

Returnsthe arccosine of x inradians,
acosh cmath only
acosh(x)

Returnsthe arc hyperbolic cosine of x in radians.
asin math and cmath
asi n(x)

Returnsthe arcsne of x in radians.
asinh cmath only
asi nh(x)

Returnsthe arc hyperbolic sineof x inradians.
atan math and cmath
at an(x)

Returnsthe arctangent of x in radians.
atanh cmath only
at anh(x)

Returnsthe arc hyperbolic tangent of x inradians.

atan2 math only

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

15.2 The operator Module

The operator module supplies functions that are equivaent to Python's operators. These functions are handy for use
with map and reduce, and in other cases where callables must be stored, passed as arguments, or returned as
function results. The functionsin operator have the same names as the corresponding special methods (covered in
Chapter 5). Each function is available with two names, with and without the leading and trailing double underscores
(e.g., both operator.add(a,b) and operator._ _add__(a,b) return a+b). Table 15-1 ligsthe functions supplied by
operator.

Table 15-1. Functions supplied by operator

Method Signature Behaveslike
abs abs(a) abs(a)
add add(a, b) a+b

and_ and_(a, b) a&b
concat concat (&, b) a+b

cont ai ns cont ai ns(a, b) bina
count Of count Of (a, b) a.count(b)
del i tem deliten(a,b) de a[b]
del slice del slice(a,b,c) del a[b]
div di v(a,b) a/b
getitem getiten(a,b) alb]
getslice getslice(a,b,c) alb:c]

i ndexCf i ndexCf (&, b) aindex(b)

LY 1Y 2 Y- A L

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

15.3 Therandom Module

The random modul e generates pseudo-random numbers with various distributions. The underlying uniform
pseudo-random generator uses the Whichmann-Hill agorithm, with aperiod of length 6,953,607,871,644. The
resulting pseudo-random numbers, while quite good, are not of cryptographic quality. If you want physicaly

generated random numbers rather than agorithmically generated pseudo-random numbers, you may use /dev/random
or /dev/urandom on platforms that support such pseudo-devices (such as recent Linux releases). For an dternative,
see http:/Amww.fourmilab.chvhotbits.

All functions of module random are methods of a hidden instance of class random.Random. Y ou can ingtantiate
Random explicitly to get multiple generatorsthat do not share state. Explicit ingtantiation is advisable if you require
random numbers in multiple threads (threads are covered in Chapter 14). This section documents the most frequently
used functions exposed by module random.

choice
choi ce(seq)
Returns arandom item from non-empty sequence seq.
getstate
getstate()

Returns an object Sthat represents the current state of the generator. Y ou can later pass Sto function setstatein
order to restore the generator's state.

jumpahead
j unpahead(n)

Advancesthe generator state asif n random numbers had been generated. Computing the new state isfaster than
generating n random numbers would be.

random
random()
Returns arandom floating-point number r from auniform distribution, such that O<=r<1.
randrange
randrange([start,] stop[, step])

Like choice(range(start,stop,step)), but faster, since randrange does not need to build the list that range would
create.

Seed

http://www.fourmilab.ch/hotbits

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

15.4 Thearray Module

The array module supplies atype, also called array, whose instances are mutable sequences, likelists. An array aisa
one-dimensiona sequence whose items can be only characters, or only numbers of one specific numeric typethat is

fixedwhen a is created.

The extension module Numeric, covered later in this chapter, also suppliesatype cdled array that isfar more
powerful than array.array. For advanced array operations and multidimensiona arrays, | recommend Numeric even if

your array el ements are not numbers.

aray.aray isasmpletype, whose main advantage is that, compared to ali<, it can save memory to hold objects al
of the same (numeric or character) type. An array object a has a one-character read-only attribute a.typecode, set
when a is created, that givesthe type of a'sitems. Table 15-2 shows the possible type codesfor array.

Table 15-2. Type codes for the array module

Type code C type

‘c' char

' b’ char

'B unsi gned char
"h' short

'H unsi gned short
i i nt

unsi gned
"l | ong
"L unsi gned | ong

"fr fl oat

'd' doubl e

Python type

gr (length 2)

i nt

i nt

i nt

i nt

i nt

| ong

i nt

| ong

fl oat

fl oat

Minimum size

1 byte

1 byte

1 byte

2 bytes

2 bytes

2 bytes

2 bytes

4 bytes

4 bytes

4 bytes

8 bvtes

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

15.5 The Numeric Package

The main module in the Numeric package is the Numeric module, which provides the array object type, aset of
functions that manipulate these objects, and universa functionsthat operate on arrays and other sequences. The
Numeric package aso supports avariety of optional modulesfor thingslike linear algebra, random numbers, masked
arrays, and Fast Fourier Transforms.

Numericisone of the rare Python packages often used with the idiom from Numeric import *. Y ou can al'so use
import Numeric and qualify each name by preceding it with Numeric. However, if you need many of the package's
names, importing al the names at onceis handy. Another popular dternative isto import Numeric with ashorter
name (e.g., import Numeric as N) and qudify each name by preceding it with N.

Although quite solid and stable, Numeric is under continuous devel opment, with functiondity being added and
limitations removed. This chapter describes specificaly Numeric Verson 21.3, the latest released verson a thetime
of thiswriting. A successor to Numeric, named numarray, is being developed by the Numeric community, and is not
quite ready for production use yet. numarray is not totally compatible with Numeric, but shares most of Numeric's
functiondity and enrichesit further. Information on numarray isavailable at http://stsdas.stsci.edu/numarray/ .

[TeamLiB]

http://stsdas.stsci.edu/numarray/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

15.6 Array Objects

Numeric provides an array type that represents agrid of items. An array object a has a specified number of
dimensions, known asitsrank, up to some arbitrarily high limit (normally 40, when Numeric isbuilt with default
options). A scalar (i.e., asingle number) hasrank 0, avector hasrank 1, amatrix hasrank 2, and so forth.

15.6.1 Type Codes

The valuesthat occupy cellsin the grid of an array object, known as the e ements of the array, are homogeneous,
meaning they are all of the sametype, and al dement values are stored within one memory area. This contrastswith a
list or tuple, where the items may be of different types and each is stored as a separate Python object. Thismeansa
Numeric array occupiesfar less memory than a Python list or tuple with the same number of items. Thetypeof a's
elementsis encoded as a'stype code, aone-character string, as shown in Table 15-3. Factory functionsthat build
array ingdances, covered in Section 15.6.6 later in this chapter, take a typecode argument that is one of the valuesin
Table15-3.

Table 15-3. Type codes for Numeric arrays

Type code Ctype Python type Synonym
‘¢! char ar (length 1) Char act er
'b' unsi gned char i nt Unsi gnedl nt 8
"1 si gned char i nt Int8

's' short i nt I nt 16

i i nt i nt I nt 32

"1 | ong i nt I nt

"f! f | oat f | oat Fl oat 32
'F two floats conpl ex Corpl ex32
‘d' doubl e fl oat Fl oat

'D two doubles conpl ex Conpl ex
o) Pybj ect * any Py bj ect

Numeric supplies readable attribute names for each type code, as shown in the last column of Table 15-3. Numeric
also supplies, on dl platforms, the names IntO, FloatO, Float8, Float16, Foat64, Complex0, Complex8, Complex16,
and Complex64. In each case, the name refers to the smallest type of the requested kind with at least that many bits.
For example, Float8 isthe smallest floating-point type of at least 8 bits (generaly the same as Hoat32, but some
platforms may provide very smal floating-point types), while Complex0 isthe smalest complex type. On some
platforms, but not al, Numeric also suppliesthe names Int64, Int128, Float128, and Complex128, with similar
meanings. These names are not supplied on dl platforms because not dl platforms provide numbers with that many
bits. The next release of Numeric will aso support unsigned integer types.

A type code of 'O’ indicates that elements are references to Python objects. In this case, e ements can be of different

http://met-www.cit.cornell.edu/noon/ncmodule.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

15.7 Universal Functions (ufuncs)

Numeric supplies named functions with the same semantics as Python's arithmetic, comparison, and bitwise
operators. Similar semantics (element-wise operation, broadcasting, coercion) are aso available with other
mathematical functions, both binary and unary, that Numeric supplies. For example, Numeric suppliestypica
mathematical functions smilar to those supplied by built-in module math, such assin, cos, log, and exp.

These functions are objects of type ufunc (which stands for universal function) and share severd traitsin addition to
those they have in common with array operators. Every ufunc instance u is calable, is applicable to sequences aswell
asto arrays, and lets you specify an optional output argument. If uisbinary (i.e., if u accepts two operand
arguments), u aso hasfour callable attributes, named u.accumulate, u.outer, u.reduce, and u.reduceat. The ufunc
objects supplied by Numeric apply only to arrays with numeric type codes (i.e., not to arrays with type code 'O’ or
'C).

Any ufunc u applies to sequences, not just to arrays. When you start with alist L, it'sfaster to call u directly on L
rather than to convert L to an array. u'sreturn valueisan array a; you can perform further computation, if any, on a,
and then, if you need alist result, you can convert the resulting array to alist by caling its method tolist. For example,
say you must compute the logarithm of each item of alist and return another list. On my system, with N set to 2222
and using python -O, alist comprehension such as:
def | ogsupto(N):
return [math.log(x) for x in range(2,N]

takes about 5.6 milliseconds. Using Python's built-in map:
def | ogsupto(N):
return map(math. |l og, range(2,N))

takes around half thetime, 2.8 milliseconds. Using Numeric's ufunc named log:
def | ogsupto(N):
return Nuneric.log(range(2,N)).tolist()

reduces the time to about 2.0 milliseconds. Taking some care to exploit the output argument to the log ufunc:

def | ogsupto(N):
tenp = Nuneric.arange(2, N, typecode=Nuneric. Fl oat)
Nuneric. |l og(tenp, temp)

return temp.tolist()

further reduces the time, down to just 0.9 milliseconds. The ability to accelerate such smple but massive
computations (here by about 6 times) with so little effort isagood part of the attraction of Numeric, and particularly
of Numeric's ufunc objects.

15.7.1 The Optional output Argument

Any ufunc u accepts an optiond last argument output that specifies an output array. If supplied, output must bean
array or array dice of the right shape and typefor u'sresults (i.e., no coercion, no broadcasting). u soresresultsin
output and does not create anew array. output can bethe same asan input array argument a of u. Indeed, output
isnormally specified in order to substitute common idioms such as a=u(a,b) with faster equivalents such as u(a,b,a).
However, output cannot share datawith a without being a (i.e., output can't be adifferent view of someor dl of a's
data). If you pass such adisalowed output argument, Numeric is normaly unable to diagnose your error and raise
an exception, so instead you get wrong results.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

15.8 Optional Numeric M odules

Many other modules are built on top of Numeric or cooperate with it. Y ou can download some of them from the
same URL as Numeric (http://sourceforge.net/projectsnumpy). Some of these extramodules may aready be
included in the package you have downloaded. Documentation for the modulesis aso part of the documentation for
Numeric. A richlibrary of scientific tools that work well with Numericis SciPy, available at http://mww.scipy.org. |
highly recommend it if you are using Python for scientific or engineering computing.

Here are some key optional Numeric modules:
MLab

ML ab supplies many Python functions written on top of Numeric. MLab's functions are Smilar in name and operation
to functions supplied by the product Matlab.
FFT

FFT supplies Python-callable Fast Fourier Transforms (FFTS) of dataheld in Numeric arrays. FFT can wrap either
the wdl-known FFTPACK Fortran-coded library or the compatible C-coded fftpack library.
LinearAlgebra

LinearAlgebra supplies Python-calable functions, operating on data held in Numeric arrays, that wrap either the
well-known LAPACK Fortran-coded library or the compatible C-coded lapack lite library. LinearAlgebraletsyou
invert matrices, solvelinear systems, compute eigenva ues and eigenvectors, perform singular value decomposition,
and least-squares-solve overdetermined linear systems.

RandomArray

RandomArray suppliesfast, high-quaity pseudo-random number generators, using various random distributions, that
work with Numeric arrays.
MA

MA supports masked arrays (i.e., arraysthat can have missing or invalid values). MA supplies alarge subset of
Numeric's functiondity, abeit sometimes at reduced speed. The extrafunctionality of MA isthe ability to associate to
each array an optiona mask, an auxiliary array of False and True, where True indicates array e ementsthat are
missing, unknown, or invaid. Computations propagate masks, and you can turn masked arraysinto plain Numeric
onesby using afill-in vauefor invaid e ements. MA iswidely applicable because experimenta data quite often has
missing or inapplicable e ements. Furthermore, when you need to extend or specidize some aspect of Numeric's
behavior for your gpplication's purposes, it often turns out to be smplest and most effective to start with MA's
sources rather than with Numeric's. The latter are often quite hard to understand and modify, due to the extreme
degree of optimization applied to them over the years.

[TeamLiB]

http://sourceforge.net/projects/numpy
http://www.scipy.org/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 16. Tkinter GUIs

Most professiond applicationsinteract with users through agraphica user interface (GUI). A GUI isnormally
programmed through atoolkit, which isalibrary that implements controls (also known as widgets) that are visble
objects such as buttons, labels, text entry fields, and menus. A GUI toolkit lets you compaose controls into a coherent
whole, display them on-screen, and interact with the user, receiving input via such devices as the keyboard and
mouse.

Python gives you a choice among many GUI toolkits. Some are platform-specific, but most are cross-platform to
different degrees, supporting at least Windows and Unix-like platforms, and often the Macintosh aswell. Check
http://phasait.net/claird/comp.lang.pythor/python GUI.html for alist of dozens of GUI toolkits available for Python.
One package, anygui (http://anygui.org), lets you program smple GUIs to one common programming interface and
deploy them with any of avariety of backends.

The most widespread Python GUI toolkit is Tkinter. Tkinter is an object-oriented Python wrapper around the
cross-platform toolkit Tk, which isaso used with other scripting languages such as Tdl (for which it was origindly
developed) and Perl. Tkinter, like the underlying Tcl/Tk, runs on Windows, Macintosh, and Unix-like platforms.
Tkinter itself comeswith standard Python distributions. On Windows, the stlandard Python distribution aso includes
the Tcl/Tk components needed to run Tkinter. On other platforms, you must obtain and ingtall Tcl/Tk separately.

This chapter covers an essentia subset of Tkinter, sufficient to build smple graphica frontends for Python
applications. A richer introduction isavailable at http:/Aww.pythonware.comvlibrary/tkinter/introductior.

[TeamLiB]

http://phaseit.net/claird/comp.lang.python/python_GUI.html
http://anygui.org/default.htm
http://www.pythonware.com/library/tkinter/introduction/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

16.1 Tkinter Fundamentals

The Tkinter module makesit easy to build smple GUI applications. Y ou smply import Tkinter, create, configure,
and position the widgets you want, and then enter the Tkinter main loop. Y our application becomes event-driven,
which meansthat the user interacts with the widgets, causing events, and your application responds via the functions
you ingtaled as handlersfor these events.

The following example shows asmple gpplication that exhibitsthis generd structure;

i mport sys, Tkinter
Tki nt er. Label (text="Wel cone!"). pack()
Tkinter.Button(text="Exit", command=sys.exit).pack()

Tki nter. mai nl cop()

The cdlsto Label and Button create the respective widgets and return them as results. Since we specify no parent
windows, Tkinter puts the widgets directly in the gpplication's main window. The named arguments specify each
widget's configuration. In this smple case, we don't need to bind variablesto the widgets. Wejust call the pack
method on each widget, handing control of the widget's geometry to alayout manager object known as the packer.
A layout manager isan invisible component whosejob isto position widgets within other widgets (known as
container or parent widgets), handling geometrical layout issues. The previous example passes no arguments to
control the packer's operation, so therefore the packer operatesin adefault way.

When the user clicks on the button, the command callable of the Button widget executes without arguments. The
example passes function sys.exit as the argument named command when it creates the Button. Therefore, when the
user clicks on the button, sys.exit(') executes and terminates the gpplication (as covered in Chapter 8).

After creating and packing the widgets, the example cdls Tkinter's mainloop function, and thus entersthe Tkinter
main loop and becomes event-driven. Since the only event for which the example instdlsahandler isaclick on the
button, nothing happens from the gpplication's viewpoint until the user clicks the button. Meanwhile, however, the
Tkinter toolkit respondsin the expected way to other user actions, such as moving the Tkinter window, covering and
uncovering the window, and so on. When the user resizes the window, the packer layout manager worksto update
the widgets geometry. In this example, the widgets remain centered, close to the upper edge of the window, with the
label above the button.

All strings going to or coming from Tkinter are Unicode strings, o be sureto review Section 9.6 in Chapter 9 if you
need to show, or accept asinput, characters outside of the ASCII encoding (you may then need to use some other
appropriate codec).

Notethat al the scriptsin this chapter are meant to be run standalone (i.e., fromacommand lineor ina
platform-dependent way, such as by double clicking on ascript'sicon). Running a GUI script from inside another
program that hasits own GUI, such as a Python integrated development environment (e.g., IDLE or PythonWin),
can cause various anomalies. This can be aparticular problem when the GUI script attempts to terminate (and thus
close down the GUI), since the script's GUI and the other program's GUI may interfere with each other.

Note aso that this chapter refersto severd all-uppercase, multi-letter identifiers (e.g., LEFT, RAISED, ACTIVE).
All these identifiers are congtant attributes of module Tkinter, used for awide variety of purposes. If your code uses
from Tkinter import *, you can then use theidentifiersdirectly. If your code usesimport Tkinter instead, you need to
qudify thoseidentifiers, just like adl others you import from Tkinter, by preceding them with "Tkinter.". Tkinter isone
of the rare Python modules designed to support from Tkinter import *, but of course you may choose to use import
Tkinter anyway, sacrificing some convenience and brevity in favor of greeter clarity. A good compromise between
convenience and clarity is often to import Tkinter with a shorter name (e.g., import Tkinter as TK).

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

16.2 Widget Fundamentals

The Tkinter module supplies many kinds of widgets, and most of them have severa thingsin common. All widgets
areingtances of classesthat inherit from class Widget. Class Widget itsdf is abstract; that is, you never indantiate
Widget itsdlf. Y ou only ingtantiate concrete subclasses corresponding to specific kinds of widgets. Class Widget's
functiondity iscommon to al the widgetsyou ingantiate.

To ingtantiate any kind of widget, cal the widget's class. Thefirst argument is the parent window of the widget, aso
known asthe widget's master . If you omit this positionad argument, the widget's master isthe gpplication'smain
window. All other arguments are in named form, option=value. Y ou can aso set or change options on an existing
widget w by cdling w.config(option=value). Y ou can get an option of w by cdling w.cget('option’), which returns
the option's value. Each widget w isamapping, so you can also get an option as w['option’] and set or change it with
w['option']=value.

16.2.1 Common Widget Options

Many widgets accept some common options. Some options affect awidget's colors, others affect lengths (normally in
pixels), and there are various other kinds. This section details the most commonly used options.

16.2.1.1 Color options

Tkinter represents colors with strings. The string can be a color name, such as'red' or ‘orangé€, or it may be of the
form '#RRGGBB', where each of R, G, and B isahexadecimal digit, to represent acolor by the values of red, green,
and blue components on ascale of 0to 255. Don't worry; if your screen can't display millions of different colors, as
implied by this scheme; Tkinter maps any requested color to the closest color that your screen can display. The
common color options are:

activebackground

Background color for the widget when the widget is active, meaning that the mouseis over thewidget and clicking
on it makes something happen
activeforeground

Foreground color for the widget when the widget is active
background (also bg)

Background color for the widget
disabledforeground

Foreground color for the widget when thewidget is disabled, meaning that clicking on the widget isignored
foreground (also fg)

Foreground color for the widget
highlightbackground

Background color of the highlight region when the widget has focus
highlightcolor

Foreground color of the highlight region when the widget hasfocus
selectbackground

Background color for the selected items of the widget, for widgets that have sdectable items, such as Listbox

http://www.pythonware.com/products/pil/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

16.3 Commonly Used Simple Widgets
The Tkinter module provides a number of smple widgetsthat cover most needs of basic GUI gpplications. This
section documents the Button, Checkbutton, Entry, Label, Listbox, Radiobutton, Scale, and Scrollbar widgets.

16.3.1 Button

Class Button implements a pushbutton, which the user clicksto execute an action. Instantiate Button with option
text=somestring to let the button show text, or image=imageobject to let the button show an image. Y ou normdly
use option command=callable to have callable execute without arguments when the user clicks the button. callable
can be afunction, abound method of an object, an instance of aclasswitha__call___method, or alambda

Besdes methods common to al widgets, an instance b of class Button supplies two button-specific methods.
flash
b.flash()

Draws the user's attention to button b by redrawing b afew times, dternatively in norma and active ates.
invoke
b.invoke()

Cdlswithout arguments the calable object that is b's command option, just like b.cget(‘command)(). This can be
handy when, within some other action, you want the program to act just asif the button had been clicked.

16.3.2 Checkbutton

Class Checkbutton implements a checkbox, which isalittle box, optionaly displaying acheckmark, that the user
clicksto toggle on or off. Y ou normaly instantiate Checkbutton with exactly one of the two options text=somestring,
to label the box with text, or image=imageobject, to labd the box with an image. Optiondly, use option command=
callable to have callable execute without arguments when the user clicksthe box. callable can be afunction, a
bound method of an object, an instance of aclasswitha__call__ method, or alambda.

Aningtance c of Checkbutton must be associated with a Tkinter variable object v, usng configuration option
vaiable=v of c. Normally, v isaningtance of IntVar, and v'svaueis 0 when the box is unchecked, and 1 when the
box is checked. The vaue of v changes when the box is checked or unchecked (either by the user clicking oniit, or
by your code calling c's methods deselect, select, toggle). Vice versa, when the value of v changes, ¢ showsor hides
the checkmark as appropriate.

Bes des methods common to al widgets, an instance ¢ of class Checkbutton supplies five checkbox-specific methods.
deselect

c.desel ect()

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

16.4 Container Widgets

The Tkinter module supplies widgets whose purpose isto contain other widgets. A Frame instance does nothing
more than act asacontainer. A Topleve instance (including Tkinter's root window, also known asthe gpplication’'s
main window) isatop-level window, so your window manager interactswith it (typicaly by supplying suitable
decoration and handling certain requests). To ensure that awidget parent, which must be aFrame or Topleve
instance, isthe parent (also known as master) of another widget child, pass parent asthefirst parameter when you
instantiate child.

16.4.1 Frame
Class Frame represents a rectangular area of the screen contained in other frames or top-level windows. Frame's

only purposeisto contain other widgets. Option borderwidth defaultsto 0, so an ingtance of Frame normaly displays
no border. Y ou can configure the option with borderwidth=1 if you want the frame border's outline to be visible.

16.4.2 Toplevel

Class Topleve represents arectangular area of the screen that is atop-level window and therefore receives
decoration from whatever window manager handles your screen. Each ingtance of Toplevel can interact with the
window manager and can contain other widgets. Every program using Tkinter has at least one top-level window,
known asthe root window. Y ou can instantiate Tkinter's root window explicitly using root=Tkinter.Tk(); otherwise
Tkinter ingtantiates its root window implicitly as and when first needed. If you want to have more than one top-level
window, firgt ingantiate the main one with root=Tkinter. TK(). Later in your program, you can instantiate other
top-level windows as needed, with calls such as another_toplevel =Tkinter. Toplevel ().

Aningance T of class Toplevd supplies many methods enabling interaction with the window manager. Many are
platform-specific, relevant only with some window managers for the X Windowing System (used mostly on Unix and
Unix-like systems). The cross-platform methods used most often are asfollows.

deiconify
T. dei conify()
Makes T digplay normdly, evenif previoudy T wasiconic or invisble.
geometry
T. geonetry([geonetry_string])

T.geometry(), without arguments, returns a string encoding T's Sze and position: widthxheight+x_offset+y_offset,
with width, height, x_offset, and y_offset being the decima forms of the corresponding numbers of pixes. T
.geometry(S), with oneargument S (astring of the same form), sets T's Size and position according to S

iconify
T.deiconify()

MNMAl A T AicvAal s o~ tamsias Fim A\ALaAA A1 e A v A 1 HlaAa Fanl -

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

16.5 M enus

ClassMenu implements all kinds of menus: menubars of top-level windows, submenus, and pop-up menus. Tousea
Menu instance m as the menubar for atop-level window w, set w's configuration option menu=m. Touse masa
submenu of aMenu ingtance x, cal X.add_cascade with anamed argument menu=m. To use m as a pop-up menu,
cal method m.post.

Besdes configuration options covered in Section 16.2.1 earlier in this chapter, aMenu instance m supports option

postcommand=callable. Tkinter cals callable without arguments each timeit is about to disolay m (whether because
of acdl to m.post or because of user actions). Y ou can use this option to update adynamic menu just in timewhen

necessary.

By default, a Tkinter menu shows atear-off entry (adashed line before other entries), which lets the user get a copy
of the menu in a separate Toplevel window. Since such tear-offs are not part of user interface standards on popular
platforms, you may want to disable tear-off functiondity by using configuration option tearoff=0 for the menu.

16.5.1 M enu-Specific Methods

Besides methods common to al widgets, an instance m of class Menu supplies severd menu-specific methods.

add, add_cascade, add checkbutton,
add_command, add_radiobutton,
add_separator

m add(entry_kind, **
entry_options)

Adds after m'sexisting entriesanew entry whose kind isthe string entry_kind, which is one of the strings 'cascade,
‘checkbutton’, ‘command’, 'radiobutton’, or 'separator’. Section 16.5.2 later in this chapter covers entry kinds and
options.

Methods whose names start with add_ work just like method add, but they accept no positional argument; what kind
of entry each method addsisimplied by the method's name.
delete

mdelete(i[,j])

m.delete(i) removes m's i entry. m.delete(i,j) removes m'sentriesfromthe i oneto the j one, included. Thefirst
entry hasindex O.

entryconfigure, entryconfig

mentryconfigure(i, **
entry_options)

Changes entry optionsfor m's i entry. entryconfig is an exact synonym.

incert incert cacrade

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

16.6 The Text Widget

Class Text implements a powerful multiline text editor, able to display images and embedded widgets aswell astext
in one or morefontsand colors. Aninstance t of Text supports many waysto refer to specific pointsin t's contents. t
supplies methods and configuration options alowing fine-grained control of operations, content, and rendering. This
section coversalarge, frequently used subset of thisvast functiondity. In some very smple cases, you can get by
with just three Text-specificidioms:

t.delete('1.0', END) # clear the widget's contents

t.insert(END, astring) # append astring to the widget's contents

sonmestring = t.get('1.0', END) # get the widget's contents as a string

END isanindex on any Text ingance t, indicating the end of t'stext. '1.0' isalso an index, indicating the start of t's
text (first line, first column). For more about indices, see Section 16.6.5 later in this chapter.

16.6.1 Text Widget Methods

Aningancet of class Text supplies many methods. Methods deding with marks and tags are covered in later
sections. Many methods accept one or two indicesinto t's contents. The most frequently used methods are the
following.

delete
t.delete(i[,j])
t.delete(i) removes t's character at index i. t.delete(i,j) removesdl charactersfrom index i toindex j, included.
get
t.get(i[,i])

t.get(i) returns t's character at index i. t.get(i,j) returnsastring made up of al charactersfromindex i toindex j,
included.

Image_create

t.image create(i,**
w ndow_opt i ons)

Inserts an embedded imagein t's contents at index i. Cal image_create with option image=e, where eisa Tkinter
image object, as covered in Section 16.2.4 earlier in this chapter.

insert
t.insert(i,s[,tags])

Insertsstring sint's contents at index i. tags, if supplied, isasequence of stringsto attach astagsto the new text, as
covered in Section 16.6.4 later in this chapter.

<parch

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

16.7 The Canvas Widget

Class Canvasisapowerful, flexible widget used for many purposes, including plotting and, in particular, building
custom widgets. Building custom widgetsis an advanced topic, and | do not cover it further in thisbook. This section
coversonly asubset of Canvasfunctionality used for the smplest kind of plotting.

Coordinates within a Canvasingtance c arein pixels, with the origin at the upper |eft corner of ¢ and positive

coordinates growing rightward and downward. There are advanced methods that |et you change c's coordinate
system, but | do not cover them in this book.

What you draw on a Canvasinstance ¢ are canvas items, which can belines, polygons, Tkinter images, arcs, ovas,
texts, and others. Each item has an item handle by which you can refer to theitem. Y ou can aso assign symbolic
names called tags to sets of canvas items (the sets of items with different tags can overlap). ALL isapredefined tag
that appliesto dl items;, CURRENT is a predefined tag that appliesto the item under the mouse pointer.

Tagson aCanvasingance are different from tags on a Text ingtance. The canvas tags are nothing more than sets of
items with no independent existence. When you perform any operation, passing a Canvastag asthe item identifier,
the operation occurs on those itemsthat are in the tag's current set. 1t makes no differenceif items are later removed
from or added to that tag's set.

Y ou cregte acanvasitem by calling on ¢ amethod with aname of the form create_kindofitem, which returnsthe
new item's handle. Methods itemcget and itemconfig of ¢ et you get and change items options.

16.7.1 Canvas Methodson Items

A Canvasingtance ¢ supplies methodsthat you can call onitems. The item argument can be anitem'shandle, as
returned for example by c.create line, or atag, meaning al itemsin that tag'sset (or noitemsat al, if thetag'sset is
currently empty), unless otherwise indicated in the method's description.

bbox
C. bbox(item)

Returns an approximate bounding box for item, atuple of four integers. the pixd coordinates of minimum x, minimum
y, maximum X, maximumyy, in this order. For example, c.bbox(ALL) returnsthe minimum and maximum x and y
coordinates of dl itemson c. When c hasno itemsat all, c.bbox(ALL) returns None.

coords
c.coords(item *coordinates)

Changesthe coordinates for item. Operates on just one item. If item isatag, coords operates on an arbitrary one of
theitems currently in thetag's set. If item isatag with an empty set, coords is an innocuous no-operation.

delete

c.del ete(item)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

16.8 Geometry M anagement

In dl the examples so far, we have made each widget visible by caling method pack on the widget. Thisis
representative of redl-life Tkinter usage. However, two other layout managers exist and are sometimes useful. This
section covers dl three layout managers provided by the Tkinter module.

Never mix geometry managers for the same container widget: dl children of each given container widget must be
handled by the same geometry manager, or very strange effects (including Tkinter going into infinite loops) may result.

16.8.1 The Packer

Cdling method pack on awidget del egates widget geometry management to asmple and flexible layout manager
component called the Packer. The Packer sizes and positions each widget within a container (parent) widget,
according to each widget's space needs (including options padx and pady). Each widget w suppliesthefollowing
Packer-related methods.

pack

w. pack(** pack_options)

Del egates geometry management to the packer. pack options may indude:
expand

When true, w expandsto fill any space not otherwise used in w's parent.

fill

Determineswhether w fills any extra space adlocated to it by the packer, or kegpsits own minima dimensions:
NONE (default), X (fill only horizontaly), Y (fill only verticaly), or BOTH (fill both horizontaly and verticdly).

dde

Determines which side of the parent w packs againgt: TOP (default), BOTTOM, LEFT, or RIGHT. To avoid
confusion, don't mix different valuesfor option sde= in widgetsthat are children of the same container. When more

than one child requests the same side (for example TOP), theruleisfirst come, first served: the first child packs at the
top, the second child packs second from the top, and so on.

pack_forget
w. pack_forget()

The packer forgets about w. w remainsdive but invisble, and you may show w again later (by caling w.pack again,
or perhaps w.grid or w.place).

pack_info
w. pack_i nfo()

Returns adictionary with the current pack _options of w.

1A Q2 The GGridder

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

16.9 Tkinter Events

So far, we've seen only the most ementary kind of event handling: the callbacks performed on cdlablesingtaled
with the command= option of buttons and menu entries of various kinds. Tkinter also letsyou ingal calablesto call
back when needed to handle a variety of events. However, Tkinter does not let you create your own custom events;,
you arelimited to working with events predefined by Tkinter itself.

16.9.1 The Event Object

Genera event callbacks must accept one argument event that isa Tkinter event object. Such an event object has
severd attributes describing the event:
char

A single-character string that isthe key's code (only for keyboard events)
keysym

A dring that isthe key's symbolic name (only for keyboard events)
num

Button number (only for mouse-button events); 1 and up
X, Y

Mouse position, in pixels, relative to the upper left corner of the widget
X_root ,y_root

Mouse position, in pixds, relative to the upper |eft corner of the screen
widget

The widget in which the event has occurred

16.9.2 Binding Callbacksto Events

To bind acalback to an event in awidget w, cal w.bind, describing the event with astring, usudly enclosed in angle
brackets ('<...>"). Thefollowing example prints 'Hello World' each time the user pressesthe Enter key:

from Tkinter inport *

root = Tk()

def greet(*ignore): print 'Hello Wrld

root. bi nd(' <Return>', greet)

root. mai nl oop()

Method tag_bind of classes Canvas and Text, covered earlier in this chapter, lets you bind event callbacks to specific
sets of items of a Canvasingtance, or to ranges within a Text instance.

16.9.3 Event Names

Frequently used event names, which are dmost dl enclosed in angle brackets, fal into afew categories.

16.9.3.1 Keyboard events
Key

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 17. Testing, Debugging, and Optimizing

Y ou're not finished with a programming task when you're done writing the code: you're finished when your codeis
running correctly and with acceptable performance. Testing means verifying that your codeis running correctly by
exercising the code under known conditions and checking that the results are as expected. Debugging means
discovering the causes of incorrect behavior and removing them (the remova is often easy once you have figured out
the causes).

Optimizing is often used as an umbrellaterm for activities meant to ensure acceptable performance. Optimizing
breaks down into benchmarking (measuring performance for given tasks and checking that it's within acceptable
bounds), profiling (instrumenting the program to find out what parts are performance bottlenecks), and optimizing
proper (removing bottlenecks to make overal program performance acceptable). Clearly, you can't remove
performance bottlenecks until you've found out where they are (using profiling), which in turn requires knowing that
there are performance problems (using benchmarking).

All of thesetasks are large and important, and each could fill abook by itsdlf. This chapter does not explore every
related technique and implication; it focuses on Python-specific techniques, approaches, and tools.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

17.1 Testing

In this chapter, | distinguish between two rather different kinds of testing: unit testing and system testing. Testingisa
rich and important field, and even more distinctions could be drawn, but my goa isto focus on the issues of most
immediate importance to software developers.

17.1.1 Unit Testing and System Testing

Unit testing meanswriting and running tests to exercise asingle module or an even smaler unit, such asaclassor
function. System testing (also known asfunctiond testing) involves running an entire program with known inputs.
Some classic books on testing draw the distinction between white-box testing, done with knowledge of a program's
internals, and black-box testing, done from the outside. This classic viewpoint parales the modern one of unit versus
sysemteding.

Unit and system testing serve different gods. Unit testing proceeds gpace with devel opment; you can and should test
each unit as you're developing it. Indeed, one modern approach is known as test-first coding: for each fegture that
your program must have, you first write unit tests, and only then do you proceed to write code that implements the
feature. Test-first coding seems a strange approach, but it has severd advantages. For example, it ensuresthat you
won't omit unit tests for some feature. Further, test-first coding is helpful becauseit urges you to focusfirst on what
tasks a certain function, class, or method should accomplish, and to dedl only afterwards with implementing that
function, class, or method. In order to test aunit, which may depend on other units not yet fully developed, you often
have to write stubs, which are fake implementations of various units interfaces that give known and correct responses
In cases needed to test other units.

System testing comes afterwards, since it requires the system to exist with some subset of system functionality
believed to be in working condition. System testing provides a sanity check: given that each modulein the program
works properly (passes unit tests), does the whole program work? If each unit is okay but the system asawholeis
not, thereis a problem with integration between units. For thisreason, system testing is also known asintegration
tegting.

System testing issimilar to running the system in production use except that you fix the inputsin advance, so any
problems you find are easy to reproduce. The cost of failurein system testing is lower than in production use, snce
outputs from system testing are not used to make decisions, control externa systems, and so on. Rather, outputs
from system testing are systematically compared with the outputs that the system should produce given the known
inputs. The purpose of the whole procedureisto find discrepancies between what the program should do and what
the program actually does in a cheap and reproducible way.

Failures discovered by system testing, just like system failuresin production use, reved defectsin unit testsaswell as
defectsin the code. Unit testing may have been insufficient; amodul€s unit tests may havefailed to exercise dl
needed functiondity of that module. In this case, the unit tests clearly need to be beefed up.

More often, failuresin system testing reveal communication problems within the devel opment team: amodule may
correctly implement a certain interface functiondity, but another module expects different functiondity. Thiskind of
problem (an integration problem in the drict sense) is harder to pinpoint in unit testing. In good development practice,
unit tests must run often, so it iscrucid that they run fast. It'stherefore essentia that each unit can assume other units
areworking correctly and as expected.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

17.2 Debugging

Since Python's devel opment cycleis so fast, the most effective way to debug is often to edit your code to make it
output relevant information at key points. Python has many waysto let your code exploreits own state in order to
extract information that may be relevant for debugging. Theingpect and traceback modules specificaly support such
exploration, which isaso known as reflection or introspection.

Once you have obtained debugging-relevant information, statement print is often the smplest way to display it. You
can dso log debugging information to files. Logging is particularly useful for programs that run unattended for along
time, asistypicdly the casefor server programs. Displaying debugging information is like displaying other kinds of
information, as covered in Chapter 10 and Chapter 16, and smilarly for logging it, as covered in Chapter 10 and
Chapter 11. Python 2.3 will aso include amodule specificaly dedicated to logging. As covered in Chapter 8,
rebinding attribute excepthook of module sysletsyour program log detailed error information just before your
program isterminated by a propagating exception.

Python a so offers hooks enabling interactive debugging. Module pdb supplies asimple text-mode interactive
debugger. Other interactive debuggers for Python are part of integrated devel opment environments (IDES), such as
IDLE and various commercid offerings. However, | do not cover IDEsin this book.

17.2.1 Theinspect Module

Theingpect module supplies functions to extract information from al kinds of objects, including the Python cal stack
(which records dl function cdls currently executing) and sourcefiles. At thetime of thiswriting, module ingpect is not
yet available for Jython. The most frequently used functions of module inspect are asfollows.

getargspec, formatargspec
get argspec(f)

f isafunction object. getargspec returns atuple with four items (arg_names, extra_args, extra_kwds, arg_defaults
). arg_names isthe sequence of names of f'sforma arguments. extra_args isthe name of the specid forma
argument of theform * args, or Noneif f has no such specia argument. extra_kwds isthe name of the specia formd
argument of theform** kwds, or Noneif f has no such specid argument. arg_defaults isthetuple of default values
for f'sarguments. Y ou can deduce other details about f's signature from getargspec's results. For example, f haslen(
arg_names)-len(arg_defaults) mandatory arguments, and the names of f's optiond arguments are the strings that
aretheitemsof thelist dice arg_names[-len(arg_defaults):].

formatargspec accepts one to four argumentsthat are the same as the items of the tuple that getargspec returns, and
returns aformatted string that displays thisinformation. Thus, formatargspec(* getargspec(f)) returns aformatted
gringwith f'sformal arguments (i.e., f's sSignature) in parentheses, as used in the def statement that created f.

getargvalues, formatargvalues
get argval ues(f)

f isaframe object, for example the result of acal to the function _getframe in module sys (covered in Chapter 8) or
to function currentframe in module ingpect. getargvalues returns atuple with four items (arg_names, extra_args,
extra_kwds, locals). arg_names isthe sequence of names of f'sfunction'sforma arguments. extra_args isthe
name of the specia forma araument of form * aras. or Noneif f'sfunction has no such specia argument. extra kwds

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

17.3 Thewarnings Module

Warnings are messages about errors or anomalies that may not be serious enough to be worth disrupting the
program's control flow (aswould happen by raisng anormal exception). The warnings module offersyou
fine-grained control over which warnings are output and what happensto them. Y our code can conditionally output a
warning by caling function warn in module warnings. Other functionsin the module let you control how warnings are
formatted, set their destinations, and conditionaly suppress some warnings (or transform some warningsinto

exceptions).
17.3.1 Classes

Module warnings supplies several exception classes representing warnings. Class Warning subclasses Exception and
isthe base classfor dl warnings. Y ou may define your own warning classes, they must subclass Warning, either
directly or viaone of its other existing subclasses, which are;

DeprecationWarning

Using deprecated features only supplied for backward compatibility
RuntimeWarning

Using features whose semantics are error-prone
SyntaxWarning

Using features whose syntax is error-prone
UserWarning

Other user-defined warnings that don't fit any of the above cases

17.3.2 Objects

In the current version of Python, there are no concrete warning objects. A warning is composed of a message (atext
string), a category (asubclass of Warning), and two pieces of information that identify where the warning was raised
from: module (name of the module raising the warning) and lineno (line number of the source code lineraising the
warning). Conceptualy, you may think of these as attributes of awarning object w, and | use attribute notation later
for clarity, but no specific warning object w actudly exists.

17.3.3 Filters

At any time, module warnings keepsalist of activefiltersfor warnings. When you import warningsfor thefirst timein
arun, the module examines syswarnoptions to determine the initial set of filters. Y ou can run Python with option -W
to st syswarnoptionsfor agiven run. Do not rely on theinitial set of filters being held specifically in syswarnoptions,
asthisisan implementation aspect that may change in future releases of Python.

Aseach warning w occurs, warnings tests w againgt each filter until afilter matches. The matching filter determines
what happensto w. Eachfilter isatuple of fiveitems. Thefirst item, action, isastring that defineswhat happenson a
match. The other four items, message, category, module, and lineno, control what it meansfor w to match thefilter,
and dl conditions must be satisfied for amatch. Here are the meanings of these items (using attribute notation to
indicate conceptua attributes of w):

message

"™ B ' B LT T T T T T R S B T Y 4 - B ‘N 71

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

17.4 Optimization

"Frgt makeit work. Then makeit right. Then makeit fast." This quotation, often with dight variations, iswidely
known as the golden rule of programming. Asfar as|'ve been able to ascertain, the quotation is attributed to Kent
Beck, who credits hisfather with it. Being widely known makes the principle no lessimportant, particularly because
it's more honored in the breach than in the observance. A negative form, dightly exaggerated for emphasis, isina
quotation by Don Knuth: "Premature optimization isthe root of dl evil in programming.”

Optimization is prematureif your codeis not working yet. First make it work. Optimization isaso premature if your
code isworking but you are not satisfied with the overal architecture and design. Remedy structurd flaws before
worrying about optimization: first make it work, then makeit right. Thesefirst two steps are not optiona—working,
well-architected code is dwaysamust.

In contrast, you don't always need to makeit fast. Benchmarks may show that your code's performanceis aready
acceptable after the first two steps. When performance is not acceptable, profiling often showsthat al performance
issues arein asmall subset, perhaps 10% to 20% of the code where your program spends 80% or 90% of thetime.
Such performance-crucia regions of your code are d so known asits bottlenecks, or hot spots. It'sawaste of effort
to optimize large portions of code that account for, say, 10% of your program's running time. Even if you made that
part run 10 times asfast (ararefeat), your program's overall runtime would only decrease by 9%, a speedup no user
will even notice. If optimization is needed, focus your efforts where they'll matter, on bottlenecks. Y ou can optimize
bottlenecks while keeping your code 100% pure Python. In some cases, you can resort to recoding some
computational bottlenecks as Python extensons, potentialy gaining even better performance.

17.4.1 Developing a Fast-Enough Python Application

Start by designing, coding, and testing your application in Python, often using some aready available extenson
modules. Thistakes much lesstimethan it would take with a classic compiled language. Then benchmark the
application to find out if the resulting code isfast enough. Ofteniit is, and you're done—congratul ations!

Since much of Python itsdlf is coded in highly optimized C, asare many of its sandard and extenson modules, your
gpplication may even turn out to be already fagter than typical C code. However, if the application istoo dow, you
need to re-examine your algorithms and data structures. Check for bottlenecks due to application architecture,
network traffic, database access, and operating system interactions. For typica applications, each of thesefactorsis
more likely than language choice to cause dowdowns. Tinkering with large-scale architectura aspects can often
speed up an gpplication dramaticaly, and Python is an excellent medium for such experimentation.

If your program isstill too dow, you should profileit to find out where thetime is going. Applications often exhibit
computationa bottlenecks—small areas of the source code, generally between 10% and 20%, which account for
80% or more of the running time. Y ou can now optimize the bottlenecks, applying the techniques suggested in the
rest of this chapter.

If normal Python-level optimizations till leave some outstanding computational bottlenecks, you can recode them as
Python extension modules, as covered in Chapter 24. In the end, your application will run at roughly the same speed
asif you had coded it dl in C, C++, or Fortran—or faster, when large-scal e experimentation has et you find a better
architecture. Y our overdl programming productivity with this processis not much lessthan if you coded everything in
Python. Future changes and maintenance are easy, sSince you use Python to express the overal structure of the
program, and lower-level, harder-to-maintain languages only for afew specific computational bottlenecks.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

| TeamLiB | MEXT F

Part IV: Network and Web
Programming

Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22

Chapter 23
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 18. Client-Side Network Protocol M odules

A program can work on the Internet asa client (aprogram that accesses resources) or asa server (aprogram that
makes services available). Both kinds of program ded with protocol issues, such as how to access and communicate
data, and with data formatting issues. For order and clarity, the Python library dealswith theseissuesin severd
different modules. Thisbook will cover the topicsin separate chapters. This chapter dedls with the modulesin the
Python library that support protocol issues of client programs.

Nowadays, data access can often be achieved most smply through Uniform Resource Locators (URLS). Python
supports URLswith modules urlparse, urllib, and urllib2. For rarer cases, when you need fine-grained control of data
access protocols normally accessed via URL s, Python supplies modules httplib and ftplib. Protocolsfor which URLs
are often insufficient include mail (modules poplib and smtplib), Network News (module nntplib), and Telnet (module
telnetlib). Python aso supports the XML-RPC protocol for distributed computing with module xmlirpclib.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

18.1 URL Access

A URL identifiesaresource on the Internet. A URL isastring composed of severa optiond parts, called
components, known as scheme, location, path, query, and fragment. A URL with all its partslooks something like:
schene:/ /1 o.ca.ti.on/pal/th?query#fragnent

For example, in http://Amww.python.org:80/fag.cgi ?src=fie, the schemeis http, the location is www.python.org: 80,
the pathis /fag.cgi, the query is src=fie, and there is no fragment. Some of the punctuation characters form apart of
one of the components they separate, while others are just separators and are part of no component. Omitting
punctuation implies missing components. For example, in mailto:me@you.com, the schemeis mailto, the path is
me@you.com, and thereisno location, query, or fragment. The missing // means the URL has no location part, the
missing ? meansit has no query part, and the missing # meansit has no fragment part.

18.1.1 The urlparse Module

The urlparse module supplies functionsto andyze and synthesize URL gtrings. In Python 2.2, the most frequently
used functions of module urlparse are urljoin, urlsplit, and urlunsplit.

urljoin

urljoin(base_url_string,
relative_url_string)

Returnsa URL tring u, obtained by joining relative_url_string, which may berdative, with base url_string. The
joining procedure that urljoin performsto obtain its result u may be summarized asfollows:

When either of the argument stringsisempty, u isthe other argument.

Whenrelative _url_string explicitly specifiesascheme different from that of base url_string, uis
relative_url_string. Otherwise, u's schemeisthat of base url_string.

When the scheme does not alow relative URLs (e.g., mailto), or relative_url_string explicitly specifiesa
location (even when it isthe same asthe location of base url_string), al other components of u are those of
relative_url_string. Otherwise, u'slocationisthat of base url_string.

u's path is obtained by joining the paths of base url_string and relative_url_string according to standard
syntax for absolute and relative URL paths. For example:
i mport url parse
url parse. urljoin(
"http://sonehost. conf sone/ pat h/ here',
"..lother/path")

Result is: 'http://somehost. conm sone/ ot her/path’

urlsplit

http://www.python.org/faq.cgi@src=fie

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

18.2 Email Protocols

Most email today is sent via servers that implement the Simple Mail Transport Protocol (SMTP) and recelved via
serversthat implement the Post Office Protocol Version 3 (POP3). These protocols are supported by the Python
standard library modules smtplib and poplib, respectively. Some servers, instead of or in addition to POP3,
implement the richer and more advanced Internet M essage Access Protocol Version 4 (IMAP4), supported by the
Python standard library module imaplib, which | do not cover in this book.

18.2.1 The poplib Module

The poplib module supplies a class POP3 to access a POP mailbox.
POP3

cl ass POP3(host , port =110)

Returns an ingtance p of class POP3 connected to the given host and port.

Instance p supplies many methods, of which the most frequently used are the following.
dele
p. del e(megNUM)

Marks message msgnum for deletion. The server performs deletions when this connection terminates by acal to
method quit. Returnsthe response string.

list
p.list(msgnum=None)

Returnsapair (response,messages) where response isthe response string and messages isalist of strings, each of
two words "'msgnum bytes', giving the message number and the length in bytes of each message in the mailbox.
When msgnum isnot None, list messages has only one item, astring with two words: msgnum as requested, and
the length bytes.

pass_
p. pass_(passwor d)

Sends the password. Must be called after method user. The trailing underscore in the function's nameis necessary
because pass is a Python keyword. Returns the response string.

quit
p.quit()

Fnd< the .e<d on and nerf orme the dda atione that were reqi iested by calleto maethod dade Rat irne the recnonee grina

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

18.3TheHTTP and FTP Protocols

Modules urllib and urllib2 are most often the handiest ways to access serversfor http, https, and ftp protocols. The
Python standard library aso supplies specific modules to use for these data access protocols.

18.3.1 The httplib Module

Module httplib supplies a class HTTPConnection to connect to an HTTP server.

HTTPConnection

cl ass HTTPConnecti on(host , port
=80)

Returns an ingtance h of class HT TPConnection, ready for connection (but not yet connected) to the given host and
port.

Instance h supplies severa methods, of which the most frequently used are the following.
close
h.close()
Closesthe connection to the HT TP server.
getresponse
h. getresponse()

Returnsan ingance r of class HT TPResponse, which represents the response received from the HT TP server. CAll
after method request has returned. Instance r supplies the following attributes and methods:
r.getheader(name,default=None)

Returns the contents of header name, or default if no such header exists.

r.msy
An instance of class Message of module mimetools, covered in Chapter 21. Y ou can use r.msg to access the
response's headers and body.

r.read()

Returns a string that is the body of the server's response.
r.reason

The gtring that the server gave asthe reason for errors or anomalies. If the request was successful, r.reason could, for
example, be'OK".
r.gtatus

An integer, the status code that the server returned. If the request was successful, r.status should be between 200
and 299 according to the HTTP standards. V a ues between 400 and 599 are typical error codes, again according to

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

18.4 Networ k News

Network News, aso known as Usenet News, is mostly transmitted with the Network News Transport Protocol
(NNTP). The Python standard library supports this protocol in its module nntplib. The nntplib module suppliesa
classNNTP to connect to an NNTP server.

NNTP

cl ass NNTP(
host , port =119, user =None,

passwd=None, r eader node=Fal se)

Returns an instance n of class NNTP connected to the given host and port, and optionaly authenticated with the
given user and passwd if user isnot None. When readermode is True, also sends a'mode reader' command; you
may need this, depending on what NNTP server you connect to and on what NNTP commands you send to that
server.

18.4.1 Response Strings

Aningtance n of NNTP supplies many methods. Each of n's methods returns atuple whosefirst itemisasring
(referred to as response in the following section) that is the response from the NNTP server to the NNTP command
corresponding to the method (method post just returns the response string, not atuple). Each method returnsthe
response gring just asthe NNTP server suppliesit. The string startswith an integer in decimal form (theinteger is
known as the return code), followed by a space, followed by more text.

For some commands, the extratext after the return codeis just acomment or explanation supplied by the NNTP
server. For other commands, the NNTP standard specifies the format of the text that follows the return code on the
response line. In those cases, the relevant method aso parsesthe text in question, yieding other itemsin the method's
resulting tuple, so your code need not perform such parsing itsdf; rather, you can just access further itemsin the
method's result tuple, as specified in the following sections.

Return codes of the form 2xx, for any two digits xx, are success codes (i.e., they indicate that the corresponding
NNTP command succeeded). Return codes of other forms, such as4xx and 5xx, indicatefaluresinthe
corresponding NNTP command. In these cases, the method does not return aresult. Rather, the method raises an
instance of exception class nntplib.NNTPError or some appropriate subclass of it, such as NNTPTemporaryError
for errorsthat may (or may not) be autometically resolved if you try the operation again, or NNTPPermanentError
for errorsthat are sure to occur again if you retry. When amethod of an NNTP instance raises an NNTPError
ingtance e, the server's response string, starting with areturn code such as 4xx, is accessible as str(e).

18.4.2 M ethods

The most frequently used methods of an NN TP instance n are asfollows.
article
n.article(id)

id isadtring, either an article ID enclosed in angle brackets (<>) or an article number in the current group. Returnsa
tunle of three srinas and alis (response.number .id.list). where number isthe article number in the current aroup. id

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

18.5 Telnet

Telnet isan old protocol, specified by RFC 854 (see hitp:/mwww.fags.org/rfes/rfc854.html), and normaly used for
interactive user sessons. The Python standard library supportsthis protocol in its module telnetlib. Module telnetlib
supplies aclass Telnet to connect to a Telnet server.

Telnet

cl ass Tel net (host =None, port =23)

Returnsan instance t of class Telnet. When host (and optionally port) isgiven, implicitly calls t.open(host,port).

Instance t supplies many methods, of which the most frequently used are asfollows.
close
t.close()
Closes the connection.
expect
t. expect (res, ti meout =None)

Reads data from the connection until it matches any of the regular expressionsthat are the items of list res, or until
timeout seconds el gpse when timeout is not None. Regular expressions and match objects are covered in Chapter 9
. Returnsatuple of threeitems (i,mo,txt), where i istheindex in res of the regular expression that matched, mo isthe
match object, and txt isal thetext read until the match, included. Raises EOFError when the connection is closed
and no datais available; otherwise, when it gets no match, returns (-1,None, txt), where txt isal thetext read, or
possibly " if nothing was read before atimeout. Results are non-determinigtic if more than oneitem in res can match,
or if any of theitemsin res include greedy parts (such as'.*").

interact
t.interact()

Entersinteractive mode, connecting standard input and output to the two channels of the connection, like adumb
Tenet dient.

open
t . open(host , port =23)

Connectsto a Telnet server on the given host and port. Cal once per ingance t, as t'sfirst method cdl. Don't cdll if
host was given on cregtion.

read_all

http://www.faqs.org/rfcs/rfc854.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

18.6 Distributed Computing

There are many standardsfor distributed computing, from smple Remote Procedure Call (RPC) onesto rich
object-oriented ones such as CORBA. Y ou can find severa third-party Python modules supporting these standards
onthe Internet.

The Python standard library comes with support for both server and client use of asimple yet powerful standard
known as XML-RPC. For in-depth coverage of XML-RPC, | recommend the book Programming Web Services
with XML-RPC, by Smon S. Laurent and Joe Johnson (O'Reilly). XML-RPC usesHTTP as the underlying
transport and encodes requests and repliesin XML. For server-side support, see Section 19.2.2.4 in Chapter 19.
Client-9de support is supplied by module xmirpclib.

The xmircplib module supports a class ServerProxy, which you instantiate to connect to an XML-RPC server. An
ingtance s of ServerProxy isaproxy for the server it connectsto. In other words, you cdl arbitrary methodson s,
and s packages up the method name and argument values as an XML -RPC request, sends the request to the
XML-RPC server, receives the server's response, and unpackages the response as the method's result. The
arguments to such method calls can be of any type supported by XML-RPC:

Boolean
Congtant attributes True and False of module xmirpclib (snce module xImrpclib predates the introduction of bool into
Python, it does not use Python's built-in True and False values for this purpose)

Integers, floating-point numbers, strings, arrays

Passed and returned as Python int, float, Unicode, and list values
Sructures

Passed and returned as Python dict values whose keys must be strings
Dates

Passed asingtances of class xmirpclib.DateTime; vaueis represented in seconds since the epoch, asin moduletime

(see Chapter 12)
Binary data

Passed asingtances of class xmirpclib.Binary; vaueisan arbitrary string of bytes

Module xmlrpclib suppliestwo factory functions.
binary
bi nary(bytestring)
Creates and returns an ingtance of Binary wrapping the given bytestring.
boolean
bool ean(x)

Creates and returns an instance of Boolean with the truth vaue of x.

http://www.oreillynet.com/meerkat/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Chapter 19. Sockets and Server-Side Network
Protocol Modules

To communicate with the Internet, programs use devices known as sockets. The Python library supports sockets
through module socket, aswell aswrapping them into higher-level modules covered in Chapter 18. To help you write
server programs, the Python library aso supplies higher-level modulesto use as frameworks for socket servers.
Standard and third-party Python modules and extensions aso support timed and asynchronous socket operations.
This chapter covers socket, the server-side framework modules, and the essential's of other, more advanced modules.

The modules covered in this chapter offer many conveniences compared to C-level socket programming. However,
in the end, the modules rely on native socket functiondity supplied by the underlying operating system. Whileit is
often possible to write effective network clients by using just the modules covered in Chapter 18, without needing to
understand sockets, writing effective network servers most often does require some understanding of sockets. Thus,
the lower-level module socket is covered in this chapter and not in Chapter 18, even though both clients and servers
use sockets.

However, | only cover the waysin which module socket lets your program access sockets; | do not try to impart the
detailed understanding of sockets, and of other aspects of network behavior independent of Python, that you may
need to make use of socket's functionality. To understand socket behavior in detail on any kind of platform, |
recommend W. Richard Stevens Unix Network Programming, Volume 1 (Prentice-Hall). Higher-level modules are
sampler and more powerful, but adetailed understanding of the underlying technology is dways useful, and sometimes
it can prove indispensable.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

19.1 The socket M odule

The socket module supplies afactory function, also named socket, that you call to generate a socket object s. You
perform network operations by calling methods on s. In aclient program, you connect to aserver by caling s
.connect. In aserver program, you wait for clientsto connect by cdling s.bind and slisten. When aclient requestsa
connection, you accept the request by calling s.accept, which returns another socket object sl connected to the
client. Once you have a connected socket object, you transmit data by calling its method send, and receive data by
cdling itsmethod recv.

Python supports both current Internet Protocol (1P) standards. |Pv4 is more widespread, while IPv6 is newer. In
IPv4, anetwork addressisapair (host,port), where host isa Domain Name System (DNS) hostname such as
‘www.python.org' or adotted-quad | P address string such as'194.109.137.226'. port isan integer indicating a
socket's port number. In IPv6, anetwork addressis atuple (host, port, flowinfo, scopeid). Since IPv6
infrastructure is not yet widely deployed, | do not cover IPv6 further in this book. When host isa DNS hostname,
Python implicitly looks up the name, using your platform’'s DNSinfrastructure, and uses the dotted-quad | P address
corresponding to that name.

Module socket supplies an exception class error. Functions and methods of the module raise error instances to
diagnose socket-specific errors. Module socket a so supplies many functions. Severa of these functionstrandate

data, such asintegers, between your host's native format and network standard format. The higher-level protocol that
your program and its counterpart are using on a socket determineswhat kind of conversions you must perform.

19.1.1 socket Functions

The most frequently used functions of module socket are asfollows.
getfqdn
get f qdn(host =" ")

Returnsthe fully qudified domain name gtring for the given host. When host is”, returnsthe fully quaified domain
name string for theloca host.

gethostbyaddr
get host byaddr (i paddr)

Returns atuple with three items (hostname, alias list, ipaddr_list). hostname isadring, the primary name of the
host whose | P dotted-quad address you pass as string ipaddr . alias list isalist of O or more dias namesfor the
host. ipaddr_list isalist of one or more dotted-quad addresses for the host.

gethostbyname_ex
get host bynanme_ex(host nane)

Returns the same results as gethostbyaddr, but takes as an argument a hostname string that can be either an IP
dotted-quad address or a DNS name.

htonl

http://www.timo-tasi.org/python/timeoutsocket.py

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

19.2 The SocketServer Module

The Python library supplies aframework module, SocketServer, to help you implement Internet servers.
SocketServer supplies server classes TCPServer, for connection-oriented servers using TCP, and UDPServer, for
datagram-oriented servers using UDP, with the same interface.

Aningance s of either TCPServer or UDPServer supplies many attributes and methods, and you can subclass either

class and override some methods to architect your own specidized server framework. However, | do not cover such
advanced and rarely used possibilitiesin this book.

Classes TCPServer and UDPServer implement synchronous servers, able to serve one request a atime. Classes
ThreadingTCPServer and ThreadingUDPServer implement threaded servers, spawning anew thread per request.
Y ou are responsible for synchronizing the resulting threads as needed. Threading is covered in Chapter 14.

19.2.1 The BaseRequestHandler Class

For normal use of SocketServer, subclass the BaseRequestHandler class provided by SocketServer and override
the handle method. Then, instantiate a server class, passing the address pair on which to serve and your subclass of
BaseRequestHandler. Findly, cal method serve forever on the server classinstance,

Aningtance h of BaseRequestHandler supplies the following methods and attributes.

client_address

The h.client_address attribute isthe pair (host,port) of the client, set by the base class at connection.
handle
h. handl e()

Y our subclass overrides this method, called by the server, on anew instance of your subclass for each new incoming
request. Typicaly, for aTCP server, your implementation of handle conducts a conversation with the client on socket
h.request to service the request. For a UDP server, your implementation of handle examinesthe datagramin h
request[0] and sends areply string with h.request[1].sendto.

request
For a TCP server, the h.request attribute is the socket connected to the client. For aUDP server, the h.request

atributeisapair (data,sock), where data isthe string of datathe client sent as arequest (up to 8192 bytes) and
sock isthe server socket. Y our handle method typically calls method sendto on sock to send areply to the client.

server

The h.server attribute is the instance of the server classthat instantiated this handler object.

http://www.sweetapp.com/xmlrpc

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

19.3 Event-Driven Socket Programs

Socket programs, particularly servers, must often be ready to perform many tasks at once. Example 19-1 acceptsa
connection request, then servesasingle client until that client has finished—other connection requests must wait. This
is not acceptable for serversin production use. Clients cannot wait too long: the server must be able to service
multiple clientsat once.

One approach that lets your program perform severa tasks at once is threading, covered in Chapter 14. Module
SocketServer optionaly supports threading, as covered earlier in this chapter. An dternative to threading that can
offer better performance and sca ability is event-driven (also known as asynchronous) programming.

An event-driven program Stsin an event loop, where it waits for events. In networking, typica eventsare "aclient
requests connection,” "data arrived on asocket,” and "a socket is available for writing." The program respondsto
each event by executing asmall dice of work to service that event, then goes back to the event loop to wait for the
next event. The Python library supports event-driven network programming with low-level select module and
higher-level asyncore and asynchat modules. Even more complete support for event-driven programming isin the
Twisted package (available at hitp:/Amww.twistedmatrix.com), particularly in subpackage twisted.internet.

19.3.1 The select Module

The sdlect module exposes a cross-platform low-leve function that |ets you implement high-performance
asynchronous network servers and clients. Module select offers additiona platform-dependent functionality on
Unix-like platforms, but | cover only cross-platform functiondity in this book.

sdlect

sel ect (i nputs, out puts, excepts,
ti meout =None)

inputs, outputs, and excepts are lists of socket objects waiting for input events, output events, and exceptiona
conditions, respectively. timeout isafloat, the maximum time to wait in seconds. When timeout is None, thereisno
maximum wait: select waits until one or more objects receive events. When timeout is O, select returns at once,
without waiting.

sdlect returns atuple with threeitems (i,0,€). i isalist of zero or more of the items of inputs, those that received input
events. oisalist of zero or more of theitemsof outputs, those that recelved output events. eisalist of zero or more
of theitems of excepts, those that received exceptional conditions (i.e., out-of-band data). Any or dl of i, 0,and e
can be empty, but at least one of them isnon-empty if timeout isNone.

In addition to sockets, you can havein lists inputs, outputs, and excepts other objects that supply amethod fileno,
callable without arguments, returning a socket's file descriptor. For example, the server classes of module
SocketServer, covered earlier in this chapter, follow this protocol. Therefore, you can have instances of those classes
inthelists. On Unix-like platforms, select.sdlect haswider gpplicability, since it can aso accept file descriptors that
do not refer to sockets. On Windows, however, select.select can accept only file descriptors that do refer to sockets.

Example 19-6 uses module select to reimplement the server of Example 19-1 with the added ability to serve any
number of clientsSmultaneoudly.

http://www.twistedmatrix.com/default.htm
http://www.twistedmatrix.com/default.htm
http://www.cs.wustl.edu/~schmidt/patterns-ace.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Chapter 20. CGIl Scripting and Alternatives

When aweb browser (or other web client) requests a page from aweb server, the server may return either static or
dynamic content. Serving dynamic content involves server-9de web programs that generate and ddliver content on
thefly, often based on information that is stored in a database. The one longstanding Web-wide standard for
server-sde programming is known as CGl, which stands for Common Gateway Interface. In server-side
programming, a client sends a structured request to aweb server. The server runs another program, passing the
content of the request. The server captures the output of the other program, and sends that output to the client asthe
response to the original request. In other words, the server'sroleisthat of agateway between the client and the other
program. The other program is called a CGI program or CGI script.

CGlI enjoysthe typicd advantages of standards. When you program to the CGI standard, your program can be
deployed on different web servers, and work despite the differences. This chapter focuses on CGI scripting in
Python. It dso mentionsthe downsides of CGI (basically, issues of scalability under high load) and some of the
aternative, nonstandard server-side architectures that you can use instead of CGl.

This chapter assumesthat you are familiar with both HTML and HTTP. For reference materia on both of these
standards, see Webmaster in aNutshell, by Stephen Spainhour and Robert Eckstein (O'Reilly). For detailed
coverage of HTML, | recommend HTML & XHTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy
(O'Reilly). And for additional coverage of HTTP, seethe HT TP Pocket Reference, by Clinton Wong (O'Relilly).

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

20.1 CGl in Python

CGl's standardization lets you use any language to code CGl scripts. Python isavery-high-level, high-productivity
language, and thus quite suitable for CGI coding. The Python standard library supplies modulesto handle typical
CGl-related tasks.

20.1.1 Form Submission M ethods

CGlI scripts are often used to handle HTML form submissions. In this case, the action attribute of the form tag
specifiesa URL for aCGl script to handle the form, and the method attribute is either GET or POST, indicating how
theform dataiis sent to the script. According to the CGI standard, the GET method should be used for forms without
sde effects, such as asking the server to query adatabase and display the results, while the POST method is meant
for forms with sde effects, such as asking the server to update a database. In practice, however, GET isaso often
used to create Sde effects. The distinction between GET and POST in practical useisthat GET encodesthe form's
contents as aquery string joined to the action URL to form alonger URL, while POST tranamits the form's contents
as an encoded stream of data, which a CGI script sees asthe script's standard input.

The GET method isdightly faster. Y ou can use afixed GET-form URL wherever you can use a hyperlink. However,
GET cannot send large amounts of data to the server, since many clients and serverslimit URL lengths (you're safe
up to about 200 bytes). The POST method has no size limits. Y ou must use POST when the form contains input tags
with type=file—the form tag must then have enctype=multipart/form-data

The CGI standard does not specify whether a single script can access both the query string (used for GET) and the
script's tandard input (used for POST). Many clients and serverslet you get away with it, but relying on this
nonstandard practice may negate the portability advantages that you would otherwise get from the fact that CGl isa
standard. Python's standard module cgi, covered in the next section, recoversform data from the query string only,
when any query string is present; otherwise, when no query string is present, cgi recoversform datafrom standard

input.
20.1.2 The cgi Module

The cgi module supplies severa functions and classes, mostly for backward compatibility or unusua needs. CGI
scripts use one function and one class from module cgi.

escape

escape(str, quot e=0)

Returnsacopy of string str, replacing each occurrence of characters &, <, and > with the appropriate HTML entity
(&, &It;, >). When quote istrue, escape aso replaces double quote characters () with & quot;. Function
escape lets a script prepare arbitrary text strings for output within an HTML document, whether or not the strings
contain charactersthat HTML interpretsin specia ways.

FieldStorage

cl ass Fi el dSt or age(
keep_bl ank_val ues=0)

http://www.xitami.org/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

20.2 Cookies

HTTPisadateless protocol, meaning that it retains no session state between transactions. Cookies, as specified by
theHTTP 1.1 standard, let web clients and servers cooperate to build a stateful session from a sequence of HTTP
transactions.

Each time a server sends aresponse to aclient's request, the server may initiate or continue asession by sending one
or more Set-Cookie headers, whose contents are small data items called cookies. When a client sends another
request to the server, the client may continue a session by sending Cookie headers with cookies previoudy received
from that server or other serversin the same domain. Each cookieisapair of strings, the name and vaue of the
cookie, plus optiona attributes. Attribute max-age isthe maximum number of seconds the cookie should be kept.
The client should discard saved cookies after their maximum age. If max-age is missing, then the client should discard
the cookie when the user's interactive session ends.

Cookies have no intrinsic privacy nor authentication. Cookiestravel in the clear on the Internet, and therefore are
vulnerableto sniffing. A maicious client might return cookies different from cookies previoudy received. To use
cookiesfor authentication or identification or to hold sengitive information, the server must encrypt and encode
cookies sent to clients, and decode, decrypt, and verify cookies received back from clients.

Encryption, encoding, decoding, decryption, and verification may al be dow when gpplied to large amounts of data.
Decryption and verification require the server to kegp some amount of server-side state. Sending substantial amounts
of data back and forth on the network isaso dow. The server should therefore persist most state datalocally, infiles
or databases. In most cases, a server should use cookies only as smdll, encrypted, verifiable keys confirming the
identity of auser or sesson, using DBM filesor arelational database (covered in Chapter 11) for session state.
HTTP setsalimit of 2 KB on cookie size, but | suggest you normally use substantially smaller cookies.

20.2.1 The Cookie Module

The Cookie module supplies severa classes, mostly for backward compatibility. CGI scripts normaly usethe
following classes from module Cookie.

Morsd

A script does not directly instantiate class Morsdl. However, instances of cookie classes hold instances of Morsdl.
Aningtance m of classMorsd represents asingle cookie element: akey string, avalue string, and optiona attributes.
misamapping. The only vaid keysin m are cookie attribute names. ‘comment’, ‘domain’, 'expires, ‘'max-age, ‘path’,
'secure, and 'version'. Keysinto m are case-insengtive. Vauesin m are strings, each holding the vaue of the
corresponding cookie attribute.

SimpleCookie
cl ass Si npl eCooki e(i nput =None)

A SmpleCookieingtance cisamapping. c'skeysare strings. c's values are Morsdl instances that wrap strings. c[k]=

v implicitly expandsto:
c[kK]=Morsel (); c[K].set(k,str(v),str(V))

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

20.3 Other Server-Side Approaches

A CGlI script runs as anew process each time aclient requestsit. Process startup time, interpreter initiaization,
connection to databases, and script initidization al add up to measurable overhead. On fast, modern server
platforms, the overhead is bearable for light to moderate loads. On abusy server, CGl may not scale up well. Web
servers support server-specific ways to reduce overhead, running scriptsin processes that can serve for severa hits
rather than starting up anew CGI process per hit.

Microsoft's ASP (Active Server Pages) isaserver extension leveraging alower-level library, ISAPI, and Microsoft's
COM technology. Maost ASP pages are coded in the VB Script language, but ASP islanguage-independent. Asthe
reptilian connection suggests, Python and ASP go very well together, aslong as Python isingtalled with the
platform-specific win32all extensions, specifically ActiveScripting. Many other server extensions are cross-platform,
not tied to specific operating systems.

The popular content server framework Zope (http://Mmwww.zope.org) is a Python application. If you need advanced
content management features, Zope should definitely be among the solutions you consider. However, Zopeisalarge,
rich, powerful system, needing afull book of itsown to do it justice. Therefore, | do not cover Zope further in this
book.

20.3.1 FastCGl

FastCGl lets you write scripts similar to CGl scripts, yet use each process to handle multiple hits, either sequentialy
or smultaneoudly in separate threads. FastCGl is available for Apache and other free web servers, but at the time of
thiswriting not for Microsoft 11S. See http://mww.fastcgi.com for FastCGI overviews and details. Go to
http://dldunn.com/python/fcgi.py for a pure Python interface to FastCGl, |etting scripts exploit FastCGl if available
and fall back to norma CGlI otherwise.

20.3.2LRWP

Long-Running Web Processes (LRWP) are currently available only for Xitami (see http:/Awww.xitami.org). Go to
http://dldunn.com/python/lrwp.py for a pure Python module (by Robin Dunn, the architect of LRWP) that lets scripts
exploit LRWP if available and fall back to norma CGI otherwise. LRWP peer processes connect to the web server
viasockets. The server can use any number of peersthat offer the same service. The server uses smple round-robin
scheduling among equivaent available peers. If arequest arriveswhen al peers are busy, the web server queuesthe
request until apeer isfree. Thissmple, clean protocol makesit easy to load-baance service requests among any
number of hosts connected to the server's host by afast, trusted local area network. Robin Dunn's article about
LRWP, at http:/Amww.imatix.com/html/xitami/index12.htm, gives architectura details and C and Python examples of
LRWP peers.

20.3.3 PyApache and mod_python

Apache's architectureis modular. Besdes CGI and FastCGl, other modules support Python server-side scripting
with Apache. Smple, lightweight PyApache (http://bel-epa.com/pyapache/) focuses on letting you use CGl-like
scriptswith low overhead. mod_python (http://mww.modpython.org) affords fuller accessto Apacheinternds,
including the ability to write authentication scripts. Both modules support the classic, widespread Apache 1.3 and the
newer Apache 2.0.

20.3.4 Webware

http://www.zope.org/default.htm
http://www.fastcgi.com/default.htm
http://alldunn.com/python/fcgi.py
http://www.xitami.org/default.htm
http://alldunn.com/python/lrwp.py
http://www.imatix.com/html/xitami/index12.htm
http://bel-epa.com/pyapache/default.htm
http://www.modpython.org/default.htm
http://webware.sf.net/default.htm
http://www.mems-exchange.org/software/quixote/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 21. MIME and Network Encodings

What travels on anetwork are streams of bytes or text. However, what you want to send over the network often has
more structure. The Multipurpose Internet Mall Extensions (MIME) and other encoding standards bridge the gap by
specifying how to represent structured data as bytes or text. Python supports such encodings through many library
modules, such as baseb4, quopri, uu, and the modules of the email package. This chapter covers these modules.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

21.1 Encoding Binary Data as Text

Severd kinds of media(e.g., email messages) contain only text. When you want to transmit binary datavia such
media, you need to encode the data as text strings. The Python standard library supplies modules that support the
standard encodings known as Base 64, Quoted Printable, and UU.

21.1.1 The base64 M odule

The base64 modul e supports the encoding specified in RFC 1521 as Base 64. The Base 64 encoding is a compact
way to represent arbitrary binary data astext, without any attempt to produce human-readable results. Module
base64 supplies four functions.

decode
decode(infile, outfile)

Reads text-file-like object infile, by cdling infile.readline until end of file (i.e, until acal to infile.readlinereturnsan
empty string), decodes the Base 64-encoded text thus read, and writes the decoded data to binary-file-like object
outfile.

decodestring
decodestring(s)

Decodestext string s, which contains one or more complete lines of Base 64-encoded text, and returns the byte
string with the corresponding decoded data.

encode

encode(infile outfile)

Reads binary-file-like object infile, by caling infile.read (for afew bytes at atime—the amount of datathat Base 64
encodesinto asingle output line) until end of file (i.e, until acdl to infile.read returns an empty string). Then it
encodes the data thus read in Base 64, and writes the encoded text as lines to text-file-like object outfile. encode
gppends \n to each line of text it emits, including the last one.

encodestring
encodestring(s)

Encodes binary string s, which contains arbitrary bytes, and returns atext string with one or more complete lines of
Base 64-encoded data. encodestring dways returns atext string ending with \n.

21.1.2 The quopri Module

The quopri module supports the encoding specified in RFC 1521 as Quoted Printable (QP). QP can represent any
binary dataastext, but it'smainly intended for datathat istextud, with ardatively modest amount of characterswith

PN P PR R - R Y A R R I PR < ¥ PR S e Y an [TP W o S P A o Y o TR [[R 1 PR SR SRy N

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

21.2 MIME and Email Format Handling

Python supplies the email package to handle parsing, generation, and manipulation of MIME files such asemall
messages, network news posts, and so on. The Python standard library also contains other modules that handle some
parts of these jobs. However, the new email package offers a more complete and systematic approach to these
important tasks. | therefore suggest you use package email, not the older modules that partially overlap with parts of
email'sfunctiondlity. Package email has nothing to do with receiving or sending email; for such tasks, see modules
poplib and smtplib, covered in Chapter 18. Instead, package email deals with how you handle messages after you
receive them or before you send them.

21.2.1 Functionsin Package email

Package email suppliestwo factory functions returning an instance m of class email.Message. Message. These
functionsrely on class email.Parser.Parser, but the factory functions are handier and smpler. Therefore, | do not
cover module Parser further in this book.

message_from_string
nmessage_fromstring(s)
Builds m by parsng string s.
message_from file
message_fromfile(f)

Builds m by parsing the contents of file-like object f, which must be open for reading.

21.2.2 The email.Message M odule

The email.Message module supplies class Message. All parts of package email produce, modify, or use instances of
classMessage. An ingtance m of Message models aMIME message, including headers and a payload (data
content). Y ou can create m, initialy empty, by calling class Message, which accepts no arguments. More often, you
create m by parsing viafunctions message from_string and message from file of module email, or by other indirect
means such asthe classes covered in " Creating Messages' later in this chapter. m's payload can be astring, asingle
other instance of Message, or alist of other Message instances for amultipart message.

Y ou can st arbitrary headers on email messages you're building. Severa Internet RFCs specify headersthat you can
use for awide variety of purposes. The main gpplicable RFC is RFC 2822 (see

http:/AMmww .fags.org/rfcs/rfc2822.html). Aninstance m of class Message holds headers aswell asapayload. misa
mapping, with header names as keys and header value strings as vaues. The semantics of m asamapping are rather
different from those of adictionary, to make m more convenient. m's keys are case-insendtive. m keeps headersin
the order in which you add them, and methods keys, values, and items return headersin that order. m can have more
than one header named key—m[key] returns an arbitrary one of them, del m[key] deletesdl of them. len(m) returns
the total number of headers, counting duplicates, not just the number of distinct header names. If thereisno header
named key, m[key] returns None and does not raise KeyError (i.e., behaves like m.get(key)), and del m[key] isa
no-operation.

A inctancra M AF MM oaccanina A vl 1 ac fha fAlLAaan rnea AaHr ke o AanA marhAade Aaal i v nth A e bhasdlare AanA i 7l AAA]

http://www.faqs.org/rfcs/rfc2822.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 22. Structured Text: HTML

Most documents on the Web use HTML, the HyperText Markup Language. Markup isthe insertion of specia
tokens, known as tags, in atext document to give structure to the text. HTML is an gpplication of thelarge, generd
standard known as SGML, the Standard General Markup Language. In practice, many of the Web's documents use
HTML indoppy or incorrect ways. Browsers have evolved many practicd heuristics over the yearsto try and
compensate for this, but even 0, it still often happens that abrowser displays an incorrect web page in some weird

way.

Moreover, HTML was never suitable for much more than presenting documents on a screen. Complete and precise
extraction of the information in the document, working backward from the document's presentation, is often
unfeasible. To tighten things up again, HTML has evolved into amore rigorous standard called XHTML. XHTML is
very smilar to traditiond HTML, but it isdefined in terms of XML and more precisaly than HTML. Y ou can handle
XHTML with the tools covered in Chapter 23.

Despite the difficulties, it's often possible to extract at least some useful information from HTML documents. Python
suppliesthe sgmillib, htmllib, and HTML Parser modules for the task of parsng HTML documents, whether this
parsing isfor the purpose of presenting the documents, or, moretypicaly, as part of an attempt to extract information
from them. Generating HTML and embedding Python in HTML are dso frequent tasks. No standard Python library
module supports HTML generation or embedding directly, but you can use norma Python string manipulation, and
third-party modules can aso help.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

22.1 The sgmllib M odule

The name of the sgmllib moduleis mideading: sgmllib parses only atiny subset of SGML, but it is<till agood way to
get information from HTML files. sgmllib supplies one class, SGML Parser, which you subclassto override and add
methods. The most frequently used methods of an instance s of your subclass X of SGMLParser are asfollows.

close
s.close()

Tdlsthe parser that thereisno moreinput data. When X overrides close, x.close must call SGMLParser.closeto
ensure that buffered data get processed.

do_tag
S.do_tag(attributes)

X supplies amethod with such aname for each tag, with no corresponding end tag, that X wants to process. tag
must bein lowercase in the method name, but can bein any mix of casesin the parsed text. SGM L Parser's
handle_tag method callsdo_tag as appropriate. attributes isalist of pars (name,value), where name iseach
atribute's name, lowercased, and value isthe value, processed to resolve entity references and character references
and to remove surrounding quotes.

end tag
s.end_tag()

X supplies amethod with such aname for each tag whose end tag X wants to process. tag must bein lowercasein
the method name, but can be in any mix of casesin the parsed text. X must dso supply a method named start_tag,
otherwiseend_tag isignored. SGML Parser's handle_endtag method callsend_tag as appropriate.

feed
s. feed(data)

Passes to the parser some of the text being parsed. The parser may process some prefix of the text, holding the rest
in abuffer until the next cal to s.feed or s.close.

handle _charref
s. handl e_charref (ref)

Called to process a character reference '& #ref;'. SGMLParser'simplementation of handle_charref handles decimal
numbersin range(0,256), like:
def handl e_charref(self, ref):
try:
c = chr(int(ref))
except (TypeError, ValueError):
sel f. unknown_charref (ref)
el se: self.handl e_data(c)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

22.2 The htmllib Module

The htmllib module supplies a class named HTM L Parser that subclasses SGML Parser and definesstart_tag, do_tag,
and end_tag methodsfor tags defined in HTML 2.0. HTML Parser implements and overrides methods in terms of
callsto methods of aformatter object, covered later in this chapter. Y ou can subclass HTM L Parser to add or
override methods. In addition to the start_tag, do_tag, and end_tag methods, an instance h of HTML Parser
suppliesthe following attributes and methods.

anchor_bgn
h. anchor _bgn(href | nane, type)

Called for each <a> tag. href, name, and type are the string val ues of the tag's attributes with the same names.
HTML Parser'simplementation of anchor_bgn maintainsalist of outgoing hyperlinks (i.e., href arguments of method s
.anchor_bgn) in an instance attribute named s.anchorlist.

anchor_end
h. anchor _end()

Cdled for each end tag. HTML Parser'simplementation of anchor_end emits to the formatter afootnote
reference that isan index within s.anchorlist. In other words, by default, HTML Parser asks the formatter to format an
<a>/<[/a>tag pair asthe text indde the tag, followed by afootnote reference number that pointsto the URL inthe
<a> tag. Of course, it's up to the formatter to deal with thisformatting request.

anchorlist

The h.anchor_ligt attribute containsthe list of outgoing hyperlink URLs built by h.anchor_bgn.

formatter

The h.formatter attribute isthe formatter object f associated with h, which you pass as the only argument when you
ingtantiate HTM L Parser(f).

handle image

h. handl e_i mage(source, alt,ismap
't align=" width=" height

=)

Cdled for each tag. Each argument isthe siring value of the tag's attribute of the same name. HTMLParser's
implementation of handle image cdls h.handle_data(alt).

nofill
h. nofill

The h.nofill attribute is false when the parser is collapsing whitespace, the normal case. It istrue when the parser must

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

22.3 TheHTMLParser Module

Module HTML Parser supplies one class, HTML Parser, that you subclass to override and add methods.
HTMLParser. HTML Parser issmilar to sgmllib.SGML Parser, but isssimpler and ableto parse XHTML aswell. The
main differences between HTMLParser and SGML Parser are the following:

HMTLParser does not call back to methods named do_tag, start_tag, and end_tag. To processtags and
end tags, your subclass X of HTML Parser must override methods handle_starttag and/or handle_endtag and
check explicitly for thetagsit wantsto process.

HMTL Parser does not keep track of, nor check, tag nesting in any way.

HMTL Parser does nothing, by default, to resolve character and entity references. Y our subclass X of
HTML Parser must override methods handle charref and/or handle_entityref if it needsto perform processing
of such references.

The most frequently used methods of an instance h of asubclass X of HTMLParser are asfollows.
close
h.close()

Tellsthe parser that thereis no more input data. When X overrides close, h.close must also cal HTMLParser.close
to ensure that buffered data gets processed.

feed
h. f eed(dat a)

Passes to the parser a part of the text being parsed. The parser processes some prefix of the text and holds the rest
in abuffer until the next cal to h.feed or h.close.

handle charref
h. handl e_charref (ref)
Called to process a character reference '& #ref;'. HTML Parser'simplementation of handle_charref does nothing.
handle_comment
h. handl e_conment (conment)

Cdled to handle comments. comment isthe string within '<!--...-->', without the delimiters. HTML Parser's
implementation of handle_comment does nothing.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

22.4 GeneratingHTML

Python does not come with toolsto generate HTML. If you want an advanced framework for structured HTML
generation, | recommend Robin Friedrich's HTMLGen 2.2 (available at
http://starship.python.net/crew/friedrich/HTM L gen/html/main.html), but | do not cover the package in this book. To
generate XHTML, you can also use the approaches covered in Section 23.4 in Chapter 23.

22.4.1 Embedding

If your favorite gpproach isto embed Python code within HTML in the manner made popular by JSP, ASP, and
PHP, one possibility isto use Python Server Pages (PSP) as supported by Webware, mentioned in Chapter 20.
Another package, focused more specifically on the embedding approach, is Spyce (available a http:/spyce.sf.net/).
For dl but the smplest problems, development and maintenance are eased by separating logic and presentation
Issues through templating, covered in the next section. Both Webware and Spyce optionaly support templatingin lieu
of embedding.

22.4.2 Templating

To generate HTML, the best approach is often templating. With templating, you start with a template, which isatext
sring (often read from afile, database, etc.) that isvalid HTML, but includes markers, dso known as placeholders,
where dynamicaly generated text must beinserted. Y our program generates the needed text and subgtitutesit into
the template. In the smplest case, you can use markers of the form '%(name)s. Bind the dynamicaly generated text
asthevauefor key 'name' in some dictionary d. The Python string formatting operator %, covered in Chapter 9,
now doesdl you need. If t isyour template, t%d isacopy of the template with al values properly substituted.

22.4.3 The Cheetah Package

For advanced templating tasks, | recommend Cheetah (available at http://www.cheetahtemplate.org). Cheetah
interoperates particularly well with Webware. When you have Webware ingtalled, Cheetah's template objects are
Webware servlets, so you can immediately deploy them under Webware. Y ou can aso use Cheetah in other
contexts, and Spyce can aso optionally use Cheetah for templating. Cheetah can processHTML templatesfor any
purpose whatsoever. In fact, | recommend Cheetah to process templates for any kind of structured text, HTML or
not.

22.4.3.1 The Cheetah templating language

In a Cheetah template, use $name or ${ name} to request theinsertion of the value of a variable named name. name
can contain dots to request lookups of object attributes or dictionary keys. For example, $a.b.c requestsinsertion of
the value of attribute c of attribute b of the variable named a. When b isadictionary, thistrandates to the Python
expression a.b['c’. If an object encountered during $ substitution is callable, Cheetah cals the object, without
arguments, asapart of thelookup. This high degree of polymorphism makes authoring and maintaining Cheetah
templates easier for non-developers, asit saves them the need to learn and understand these distinctions.

A Cheetah template can contain directives, which are verbs sarting with # that dlow comments, fileinclusion, flow
control (conditionals, loops, exception handling), and more. Cheetah basicaly provides arich templating language on
top of Python. The most frequently used verbsin smple Cheetah templates are the following (mostly smilar to
Python, but with $in front of names, no trailing :, and no mandatory indents, but #end clauses insteed):

#break, #continue, #pass

http://starship.python.net/crew/friedrich/HTMLgen/html/main.html
http://spyce.sf.net/default.htm
http://www.cheetahtemplate.org/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Chapter 23. Structured Text: XML

XML, the eXtensible Markup Language, has taken the programming world by storm over the last few years. Like
SGML, XML isametalanguage, alanguage to describe markup languages. On top of the XML 1.0 specification, the
XML community (in good part inside the World Wide Web Consortium, W3C) has standardized other technologies,
such as various schema languages, Namespaces, X Path, XLink, X Pointer, and XSLT.

Industry consortiain many fields have defined industry-specific markup languages on top of XML, to facilitete data
exchange among applicationsin the various fields. Such industry standards | et applications exchange dataeven if the
applications are coded in different languages and deployed on different platforms by different firms. XML, related
technologies, and XM L-based markup languages are the basis of interapplication, cross-language, cross-platform
datainterchange in modern gpplications.

Python has excdlent support for XML. The standard Python library suppliesthe xml package, which letsyou use
fundamental XML technology quite smply. The third-party package PyXML (available at http://pyxml.of.net) extends
the standard library's xml with validating parsers, richer DOM implementations, and advanced technologies such as
XPath and XSLT. Downloading and ingtaling PyXML upgrades Python's own xml packages, so it can be agood
ideato do so even if you don't use PyXML-specific features.

On top of PyXML, you can chooseto ingtal yet another freely available third-party package, 4Suite (available at
http://4suite.org). 4Suite provides yet more XML parsersfor specid niches, advanced technologies such as XLink
and X Pointer, and code supporting standards built on top of XML, such asthe Resource Description Framework

(RDF).

Asan dternative to Python's built-in XML support, PyXML, and 4Suite, you can try ReportLab's new pyRXP, a
fast vdidating XML parser based on Tobin's RXP. pyRXPis DOM-likein that it constructs an in-memory
representation of the whole XML document you're parsing. However, pyRXP does not construct a DOM -compliant
tree, but rather alightweight tree of Python tuplesto save memory and enhance speed. For more information on
pPYRXP, see hitp:/mww.reportlab.com/xml/pyrxp.html .

For coverage of dl aspects of XML and of how you can process XML with Python, | recommend Python & XML,
by Christopher Jones and Fred Drake (O'Reilly). In this chapter, | cover only the essentials of the standard library's
xml package, taking some e ementary knowledge of XML itsdlf for granted.

[TeamLiB]

http://pyxml.sf.net/default.htm
http://4suite.org/default.htm
http://www.reportlab.com/xml/pyrxp.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

23.1 An Overview of XML Parsing

When your application must parse XML documents, your first, fundamental choiceiswhat kind of parsing to use.

Y ou can use event-driven parsing, where the parser reads the document sequentialy and calls back to your
application each time it parses asignificant aspect of the document (such as an dement). Or you can use
object-based parsing, where the parser reads the whole document and builds in-memory data structures,
representing the document, that you can then navigate. SAX isthe main, norma way to perform event-driven parsing,
and DOM isthe main, normal way to perform object-based parsing. In each case there are dternatives, such as
direct use of expat for event-driven parsing and pyRXP for object-based parsing, but | do not cover these
dternativesin this book. Another interesting possibility is offered by pulldom, which is covered later in this chapter.

Event-driven parsing requires fewer resources, which makesit particularly suitable when you need to parse very large
documents. However, event-driven parsing requires you to structure your gpplication accordingly, performing your
processing (and typically building auxiliary data structures) in your methods that are cdled by the parser.
Obyject-based parsng gives you more flexibility about the ways in which you can structure your application. It may be
more suitable when you need to perform very complicated processing, aslong asyou can afford the extraresources
needed for object-based parsing (typicaly, this meansthat you are not dealing with very large documents).
Object-based approaches a so support programs that need to modify or create XML documents, as covered later in
this chapter.

Asagenerd guiddine, when you are till undecided after studying the various trade-offs, | suggest you try
event-driven parsing when you can see areasonably direct way to perform your program's tasks through this
gpproach. Event-driven parsing ismore scalable; therefore, if your program can perform itstask via event-driven
parsing, it will be gpplicable to larger documents than it would be able to handle otherwise. If event-driven parsing is
too confining, try pulldom instead. | suggest you consider (non-pull) DOM only when you think DOM isthe only way
to perform your program'’s tasks without excessive contortions. In that case DOM may be best, aslong as you can
accept the resulting limitations, in terms of the maximum size of documents that your program is able to support and
the costsin time and memory for processng.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

23.2 Parsing XML with SAX

In most cases, the best way to extract information from an XML document is to parse the document with a parser
compliant with SAX, the Smple API for XML. SAX definesa standard API that can be implemented on top of
many different underlying parsers. The SAX gpproach to parsing has smilaritiesto the HTML parsers covered in
Chapter 22. Asthe parser encounters XML elements, text contents, and other significant eventsin the input stream,
the parser calls back to methods of your classes. Such event-driven parsing, based on callbacks to your methods as
relevant events occur, also has amilarities to the event-driven gpproach that isamost universd in GUIsand in some
networking frameworks. Event-driven approaches in various programming fields may not appear natura to
beginners, but enable high performance and particularly high scalability, making them very suitable for high-workload
Cases.

To use SAX, you define a content handler class, subclassing alibrary class and overriding some methods. Then, you
build aparser object p, ingal an instance of your classas p's handler, and feed p the input Stream to parse. p cdls
methods on your handler to reflect the document's structure and contents. Y our handler's methods perform
application-specific processing. Thexml.sax package supplies afactory function to build p, aswell as convenience
functionsfor ampler operation in typical cases. xml.sax aso supplies exception classes, used to diagnose invaid input
and other errors.

Optiondly, you can aso register with parser p other kinds of handlers besides the content handler. Y ou can supply a
custom error handler to use an error diagnosis strategy different from norma exception raising, and try to diagnose
severd errorsduring aparse. Y ou can supply acustom DTD handler to receive information about notation and
unparsed entities from the XML document's Document Type Definition (DTD). Y ou can supply acustom entity
resolver to handle external entity referencesin advanced, customized ways. These additiond possibilitiesare
advanced and rarely used, so | do not cover them in this book.

23.2.1 The xml.sax Package

The xml.sax package supplies exception class SAX Exception, and subclasses of it to support fine-grained exception
handling. xml.sax aso suppliesthree functions.

make_parser
make_par ser (parsers_list=[])

parsers list isalist of strings, names of modules from which you would like to build your parser. make parser tries
each module in sequence until it finds one that defines a suitable function creaste parser. After themodulesin
parsers list, if any, make parser continues by trying alist of default modules. make parser terminates as soon asit
can generate a parser p, and returns p.

parse

parse(file, handl er,
error_handl er =None)

file isafilename or afile-like object open for reading, containing an XML document. handler isgeneraly aninstance
of your own subclass of class ContentHandler, covered later in this chapter. error_handler, if given, isgenerdly an
instance of your own subclass of class ErrorHandler. Y ou don't necessarily have to subclass ContentHandler and/or
ErrorHandler: you just need to provide the same interfaces as the classes do. Subclassing is often aconvenient means
tothisend.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

23.3 Parsing XML with DOM

SAX parsing does not build any structure in memory to represent the XML document. This makes SAX fast and
highly scaable, asyour gpplication builds exactly aslittle or as much in-memory structure as needed for its specific
tasks. However, for particularly complicated processing tasks involving reasonably small XML documents, you may
prefer to let the library build in-memory structures that represent the whole XML document, and then traverse those
structures. The XML standards describe the DOM (Document Object Model) for XML. A DOM object represents
an XML document as atree whose root is the document object, while other nodes correspond to eements, text
contents, element attributes, and so on.

The Python standard library suppliesaminima implementation of the XML DOM standard, xml.dom.minidom.
minidom builds everything up in memory, with thetypica pros and cons of the DOM approach to parsing. The
Python standard library also supplies adifferent DOM-like approach in module xml.dom.pulldom. pulldom occupies
an interesting middle ground between SAX and DOM, presenting the stream of parsing events as a Python iterator
object so that you do not code callbacks, but rather loop over the events and examine each event to seeif it's of
interest. When you do find an event of interest to your application, you can ask pulldom to build the DOM subtree
rooted in that event's node by calling method expandNode, and then work with that subtree as you would in
minidom. Paul Prescod, pulldom's author and XML and Python expert, describes the net result as"80% of the
performance of SAX, 80% of the convenience of DOM." Other DOM parsers are part of the PyXML and 4Suite
extension packages, mentioned at the start of this chapter.

23.3.1 The xml.dom Package

The xml.dom package supplies exception class DOM Exception and subclasses of it to support fine-grained
exception handling. xml.dom aso supplies aclass Node, typicaly used as abase classfor al nodes by DOM
implementations. Class Node only supplies constant attributes giving the codes for node types, such as
ELEMENT_NODE for dements, ATTRIBUTE_NODE for attributes, and so on. xml.dom aso supplies constant
module attributes with the URIs of important namespaces. XML_NAMESPACE, XMLNS NAMESPACE,
XHTML_NAMESPACE, and EMPTY_NAMESPACE.

23.3.2 The xml.dom.minidom M odule

The xml.dom.minidom module suppliestwo functions.
parse
parse(file, parser =None)

file isafilename or afile-like object open for reading, containing an XML document. parser, if given, isan ingance
of aSAX parser class; otherwise, parse generates adefault SAX parser by calling xml.sax.make parser(). parse
returns a minidom document object instance representing the given XML document.

parseString
parseString(string, parser =None)

Like parse, except that string isthe XML document in string form.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

23.4 Changing and Generating XML

Just likefor HTML and other kinds of structured text, the smplest way to output an XML document is often to
prepare and write it using Python's normal string and file operations, covered in Chapter 9 and Chapter 10.
Templating, covered in Chapter 22, is aso often the best gpproach. Subclassing class XML Generator, covered
earlier in this chapter, isagood way to generate an XML document that islike an input XML document, except for a
few changes.

The xml.dom.minidom module offers yet another possibility, because its classes support methods to generate, insert,
remove, and ater nodesin aDOM tree representing the document. Y ou can create a DOM tree by parsing and then
alter it, or you can create an empty DOM tree and populateit, and then output the resulting XML document with
methods toxml, toprettyxml, or writexml of the Document instance. Y ou can aso output asubtree of the DOM tree
by calling these methods on the Node that is the subtreg's roct.

23.4.1 Factory Methods of a Document Object

The Document class supplies factory methods to create new instances of subclasses of Node. The most frequently
used factory methods of a Document instance d are asfollows.

createComment
d. creat eComment (dat a)

Builds and returns an instance ¢ of class Comment for acomment with text data.
createElement
d. creat eEl ement (t agnane)

Builds and returns an ingtance e of class Element for an eement with the given tag.
createTextNode
d. cr eat eText Node(dat a)

Builds and returns an ingance t of class TextNode for atext node with text data.

23.4.2 Mutating M ethods of an Element Object

Aningtance e of class Element suppliesthe following methods to remove and add attributes.
removeAttribute
e.renoveAttri but e(nane)

Removes e's attribute with the given name.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

| TeamLiB | MEXT F

Part V: Extending and
Embedding

Chapter 24
Chapter 25

Chapter 26
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Chapter 24. Extending and Embedding Classic
Python

Classic Python runs on a portable C-coded virtua machine. Python's built-in objects, such as numbers, sequences,
dictionaries, and files, are coded in C, as are severa modulesin Python's standard library. Modern platforms support
dynamic-load libraries, with file extensons such as .dll on Windows and .so on Linux, and building Python produces
such binary files. Y ou can code your own extension modulesfor Python in C, using the Python C APl covered in this
chapter, to produce and deploy dynamic libraries that Python scripts and interactive onscan later use with the
import statement, covered in Chapter 7.

Extending Python means building modules that Python code can import to access the features the modules supply.
Embedding Python means executing Python code from your gpplication. For such execution to be useful, Python
code must in turn be able to access some of your application's functiondity. In practice, therefore, embedding implies
some extending, aswell as afew embedding-specific operations.

Embedding and extending are covered extensively in Python's online documentation; you can find an in-depth tutoria
at http:/mww.python.org/doc/ext/ext.ntml and areference manua at http:/Aww.python.org/doc/api/api.html . Many
details are best studied in Python's extensively documented sources. Download Python's source distribution and
study the sources of Python's core, C-coded extension modules and the example extensions supplied for study
pUrPOSES.

This chapter coversthe basics of extending and embedding Python with C. It dso mentions, but does not cover,
other possibilitiesfor extending Python.

[TeamLiB]

http://www.python.org/doc/ext/ext.html
http://www.python.org/doc/api/api.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

24.1 Extending Python with Python's C API

A Python extenson module named x resdesin adynamic library with the same filename (x.pyd on Windows, x.so
on most Unix-like platforms) in an appropriate directory (normally the site-packages subdirectory of the Python
library directory). Y ou generdly build the x extension module from a C sourcefile x.c with the overal structure:

#i ncl ude <Pyt hon. h>

/* omtted: the body of the X nodule */

voi d
initx(void)
{

/* omtted: the code that initializes the nodul e nanmed X */

}

When you have built and ingtalled the extension module, a Python statement import x loads the dynamic library, then
locates and calls the function named initx, which must do dl that is needed to initidize the module object named x.

24.1.1 Building and I nstalling C-Coded Python Extensions

To build and ingtdl a C-coded Python extension module, it's smplest and most productive to use the distribution
utilities, distutils, covered in Chapter 26. In the same directory as x.c, place afile named setup.py that contains at
leest the following Statements:

fromdistutils.core inport setup, Extension

setup(nane=' X', ext_nodul es=[Extension('X',sources=['X.c'])])

From ashell prompt in this directory, you can now run:
C \> python setup.py install

to build the module and ingtdl it so that it becomes usable in your Python ingtdlation. The distutils perform al needed
compilation and linking steps, with the right compiler and linker commands and flags, and copy the resulting dynamic
library in an appropriate directory, dependent on your Python ingtallation. Y our Python code can then accessthe
resulting module with the statement import X.

24.1.2 Overview of C-Coded Python Extension M odules

Your Cfunction initx generdly hasthe following overdl structure:
voi d
initx(void)
{
PyQbj ect* thisnod = Py_InitMdul e3("x", x_methods, "docstring for x");
/* optional: calls to PyMddul e_AddObj ect (thisnpd, "somenane", someobj)
and other Python C APl calls to finish preparing nodul e object
thisnod and its types (if any) and ot her objects.
*/
}

More details are covered in Section 24.1.4 later in this chapter. x_methods isan array of PyMethodDef structs.
Each PyMethodDef struct in the x_methods array describes a C function that your module x makes available to
Python code that imports x. Each such C function hasthe following overal structure:

static PyQbject*

func_wi t h_nanmed_ar gunment s(PyQoj ect* self, PyQObject* args, PyQObject* kwds)

{

/* omtted: body of function, which accesses arqunents via the Python C

http://www.python.org/dev/doc/devel/api/type-structs.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

24.2 Extending Python Without Python's C API

Y ou can code Python extensonsin other classic compiled languages besides C. For Fortran, the choice is between
Paul Duboiss Pyfort (available at http:/pyfortran.sf.net) and Pearu Peterson's F2PY (available at
http://cens.ioc.ee/projectsf2py2e/). Both packages support and require the Numeric package covered in Chapter 15,
since numeric processing is Fortran'stypica application area.

For C++, the choice is between Gordon McMillan'ssmple, lightweight SCXX (available at
http:/Amwww.memillan-inc.com/scxx.html), which uses no templates and is thus suitable for older C++ compilers, Paul
Duboiss CXX (availableat http://cxx.sf.net), and David Abrahamss Boost Python Library (available at
http://www.boost.org/libs/python/doc). Boost is a package of C++ libraries of uniformly high quaity for compilers
that support templates well, and includes the Boost Python component. Paul Dubois, CXX's author, recommends
considering Boost. Y ou may aso choose to use Python's C API from your C++ code, using C++ in thisrespect asif
it was C, and foregoing the extra convenience that C++ affords. However, if you're dready using C++ rather than C
anyway, then using SCXX, CXX, or Boost can subgtantialy improve your programming productivity when
compared to using Python's C API.

If your Python extension isbasicaly awrapper over an existing C or C++ library (as many are), consder SWIG, the
Simplified Wrapper and Interface Generator (available at http:/Aww.swig.org). SWIG generates the C source code
for your extenson based on the library's header files, generadly with some help in terms of further annotationsin an
interface description file.

Greg Ewing isdeveoping alanguage, Pyrex, specificaly for coding Python extensions. Pyrex (found at
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/) is an interesting mix of Python and C concepts, and is
aready quite usable despite being anew devel opment.

The weave package (available at http://www.scipy.org/site content/weave), lets you run inline C/C++ code within
Python. The blitz function, in particular, generates and runs C++ code from expressions using the Numeric package,
and thus requires Numeric.

If your application runs only on Windows, the most practica way to extend and embed Python is generally through
COM. In particular, COM is by far the best way to use Visua Basic modules (packaged as ActiveX classes) from
Python. COM is a so the best way to make Python-coded functionadity (packaged as COM servers) availableto
Visua Basic programs. The standard Python distribution for Windows does not directly support COM: you aso
need to download and ingd| the platform-specific win32al extenson package (available at
http://starship.python.net/crew/mhammond/). | do not cover Windows-specific functiondity, including COM, any
further in thisbook. For excellent coverage of platform-specific Python use on Windows, | recommend Python
Programming on Win32, by Mark Hammond and Andy Robinson (O'Reilly).

[TeamLiB]

http://pyfortran.sf.net/default.htm
http://cens.ioc.ee/projects/f2py2e/default.htm
http://www.mcmillan-inc.com/scxx.html
http://cxx.sf.net/default.htm
http://www.boost.org/libs/python/doc
http://www.swig.org/default.htm
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/default.htm
http://www.scipy.org/site_content/weave
http://starship.python.net/crew/mhammond/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

24.3 Embedding Python

If you have an application aready written in C or C++ (or any other classic compiled language), you may want to
embed Python as your application's scripting language. To embed Python in languages other than C, the other
language must be ableto cal C functions. In the following, | cover only the C view of things, since other languages
vary widely regarding what you haveto do in order to cal C functionsfrom them.

24.3.1 Installing Resident Extension Modules

In order for Python scripts to communicate with your application, your application must supply extension modules
with Python-accessible functions and classes that expose your application's functiondity. If these modules are linked

with your application rather than resding in dynamic libraries that Python can load when necessary, register your
modules with Python as additiond built-in modules by cdling the Pylmport_Appendinittabb C API function.

Pyl mport_Appendl nittab
i nt
Pyl nport _Appendl nittab(char*

name, void (*initfunc)(void))

name is the module name, which Python scripts use in import statements to access the module. initfunc isthe
module initidization function, taking no argument and returning no result, as covered earlier in this chepter (i.e,
initfunc isthe modul€s function that would be named initname for anorma extension module residing in adynamic
library). Pylmport_Appendinittab must be caled before caling Py _Initidize.

24.3.2 Setting Arguments

Y ou may want to set the program name and arguments, which Python scripts can access as sys.argv, by caling either
or both of the following C API functions.

Py_SetProgramName

voi d Py_Set ProgramNane(char*
nane)

Setsthe program name, which Python scripts can access as sys.argv[0]. Must be called before calling Py _Initidize.

PySys SetArgv

void PySys_Set Argv(int argc
, Char** argv)

Setsthe program arguments, which Python scripts can access as sys.argv[1:]. Must be cdled after calling
Py Initidize,

24.3.3 Python Initialization and Finalization

After ingdalina extra built=in modiules and ontionad v sattina the nroaram name vour annlication initiaizes Pvthon At

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 25. Extending and Embedding Jython

Jython implements Python on a Java Virtua Machine (JVM). Jython's built-in objects, such as numbers, sequences,
dictionaries, and files, are coded in Java. To extend Classc Python with C, you code C modules using the Python C
AP (ascovered in Chapter 24). To extend Jython with Java, you do not have to code Java modulesin specia ways:
every Java package on the Java CLASSPATH (or on Jython's sys.path) is automaticaly available to your Jython
scripts and Jython interactive sessions for use with the import statement covered in Chapter 7. This appliesto Java's
standard libraries, third-party Javalibraries you have ingtaled, and Java classes you have coded yoursdlf. Y ou can
aso extend Javawith C using the Java Native Interface (INI), and such extensons will dso be available to Jython
code, just asif they had been coded in pure Javarather than in INI-compliant C.

For details on advanced issues related to interoperation between Java and Jython, | recommend Jython Essentials, by
Samue e Pedroni and Noel Rappin (O'Rellly). In this chapter, | offer abrief overview of the smplest interoperation
scenarios, which suffices for alarge number of practica needs. Importing, using, extending, and implementing Java
classes and interfaces in Jython just works in most practical cases of interest. In some cases, however, you need to
be aware of issuesrelated to bility, type conversions, and overloading, as covered in this chapter. Embedding
the Jython interpreter in Java-coded applicationsis smilar to embedding the Python interpreter in C-coded
applications (as covered in Chapter 24), but the Jython task is easier. Jython offers yet another possibility for
interoperation with Java, using the jythonc compiler to turn your Python sourcesinto classic, static VM bytecode
.classand .jar files. Y ou can then use these bytecode filesin Java applications and frameworks, exactly asif their
source code had been in Javarather than in Python.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

25.1 Importing Java Packagesin Jython

Unlike Java, Jython does not implicitly and automatically import javalang. Y our Jython code can explicitly import
javalang, or even just import java, and then use classes such asjava.lang.System and javalang.String asif they were
Python classes. Specifically, your Jython code can use imported Java classes asif they were Python classeswitha
_dots__ classattribute (i.e., you cannot create arbitrary new instance attributes). Y ou can subclass a Java class with
your own Python class, and instances of your classlet you create new attributes just by binding them, asusual.

Y ou may choose to import atop-level Java package (such asjava) rather than specific subpackages (such as
javalang). Y our Python code acquiresthe ability to access al subpackages when you import the top-level package.
For example, after import java, your code can use classesjava.lang.String, java.util.Vector, and so on.

The Jython runtime wraps every Java class you import in atransparent proxy, which manages communication
between Python and Java code behind the scenes. This gives an extrareason to avoid the dubiousidiom from
somewhere import *, in addition to the reasons mentioned in Chapter 7. When you perform such abulk import, the
Jython runtime must build proxy wrappersfor al the Java classesin package somewhere, spending substantia
amounts of memory and time wrapping classes your code will probably not use. Avoid from ... import * except for
occasiond conveniencein interactive exploratory sessions, and stick with the import statement. Alternatively, it's
okay to use specific, explicit from statements for classes you know your Python code wants to use (e.g., from
javalang import System).

25.1.1 The Jython Registry

Jython relieson aregistry of Java properties as a cross-platform equivaent of the kind of settings that would
normaly use the Windows registry, or environment variables on Unix-like systems. Jython'sregistry fileisa standard
Java propertiesfile named registry, located in adirectory known as the Jython root directory. The Jython root
directory isnormaly the directory where jython.jar islocated, but you can override this by setting Java properties
python.home or ingtall.root. For specia needs, you may tweek the Jython registry settingsviaan auxiliary Java
properties file named .jython in your home directory, and/or via command-line optionsto the jython interpreter
command. The registry option python.path is equivaent to classic Python's PY THONPATH environment variable.
Thisisthe option you may most often be interested in, asit can help you ingtdl extra Python packages outside of the
Jython ingtdlation directories (e.g., sharing Python packagesingtaled for CPython use).

25.1.2 Accessibility

Normally, your Jython code can access only public features (methods, fields, inner classes) of Javaclasses. Y ou may
choose to make private and protected features available by setting an option in the Jython registry before you run
Jython:

pyt hon. security.respect JavaAccessi bility=fal se

Such bending of norma Javarules should never be necessary for normal operation. However, the ability to access
private and protected features may be useful to Jython scripts meant to thoroughly test a Java package, which iswhy
Jython givesyou this option.

25.1.3 Type Conversions

The Jython runtime converts data between Python and Java transparently. However, when a Java method expectsa
boolean argument, you have to pass an int or an instance of javalang.Boolean in order to cdl that method from

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

25.2 Embedding Jython in Java

Y our Java-coded application can embed the Jython interpreter in order to use Jython for scripting. jython.jar must be
inyour Java CLASSPATH. Y our Java code must import org.python.core.* and org.python.util.* in order to access

Jython's classes. To initidize Jython's state and instantiate an interpreter, use the Java satements:
PySystenttate.initialize();

Pyt honl nterpreter interp = new Pythonlnterpreter();

Jython also supplies severd advanced overloads of this method and constructor in order to et you determinein detall
how PySystemState is set up, and to control the system state and globa scope for each interpreter instance.
However, intypica, smple cases, the previous Javacodeisdl your application needs.

25.2.1 The Pythoninterpreter Class

Once you have an ingtance interp of class Pythonlnterpreter, you can call method interp.eva to have the interpreter
evauate a Python expresson held inaJava string. Y ou can dso cdl any of severd overloads of interp.exec and
interp.execfile to have the interpreter execute Python statements held in a Java string, a precompiled Jython code
object, afile, or aJava InputStream.

The Python code you execute can import your Java classes in order to access your gpplication's functiondity. Y our
Java code can set attributes in the interpreter namespace by caling overloads of interp.set, and get attributes from
the interpreter namespace by cdling overloads of interp.get. The methods overloads give you achoice. You can
work with native Javadataand let Jython perform type conversions, or you can work directly with PyObject, the
base class of al Python objects, covered later in this chapter. The most frequently used methods and overloads of a
Pythoninterpreter ingtance interp arethefollowing.

eval
PyObj ect interp.eval (String s)

Evduates, in interp's namespace, the Python expresson held in Javastring s, and returns the PyObject that isthe
expresson's result.

exec

void interp.exec(String s)
void interp.exec(PyObject code)

Executes, in interp's namespace, the Python statements held in Java string s or in compiled PyObject code
(produced by function __builtin__.compile of package org.python.core, covered later in this chapter).

execfile

void interp. execfile(String
name)

void interp
.execfile(java.io.lnputStream s

)
void interp
.execfile(java.io.lnputStream s

, String nane)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

25.3 Compiling Python into Java

Jython comeswith the jythonc compiler. Y ou can feed jythonc your .py sourcefiles, and jythonc compilesthem
into norma VM bytecode and packagesthem into .class and .jar files. Since jythonc generates Satic, classic
bytecode, it cannot quite cope with the whole range of dynamic possibilitiesthat Python alows. For example, jythonc
cannot successfully compile Python classesthat determine their base classes dynamicdly at runtime, asthe normal
Python interpreters alow. However, except for such extreme examples of dynamically changeable class structures,
jythonc does support compilation of essentialy the whole Python language into Java bytecode.

25.3.1 The jythonc command

jythonc residesin the Tools/jythonc directory of your Jython installation. Y ou invokeit from ashell (console)
command linewith the syntax:
j ythonc options nodul es

options are zero or more option flags sarting with --. modules are zero or more names of Python sourcefilesto
compile, either as Python-style names of modules residing on Python's sys.path, or asrelative or absolute pathsto
Python sourcefiles. Include the .py extension in each path to a sourcefile, but not in amodule name.

More often than not, you will specify the jythonc option --jar jarfile, to build a .jar file of compiled bytecode rather
than separate .class files. Most other options dedl with what to put inthe .jar file. Y ou can choose to makethefile
sdf-aufficient (for browsers and other Java runtime environments that do not support using multiple .jar files) at the
expense of making thefile larger. Option --dl ensures dl Jython core classes are copied into the .jar file, while
--core tries to be more conservative, copying as few core classes as feasible. Option --addpackages packages lets
youlig (in packages, acommarseparated list) those external Java packages whose classes are copied into the .jar
fileif any of the Python classes jythonc is compiling depends on them. An important dternative to --jar is--bean
jarfile, which aso includes abean manifest inthe .jar file as needed for Python-coded JavaBeans components.

Ancther usgful jythonc option is --package package, which ingructs Jython to place al the new Java classesit's
creting in the given package (and any subpackages of package needed to reflect the Python-side package
dructure).

25.3.2 Adding Java-Visible Methods

The Javaclassesthat jythonc crestes normaly extend existing classes from Javallibraries and/or implement existing
interfaces. Other Java-coded applications and frameworks ingtantiate the jythonc-created classes via constructor
overloads, which have the same signatures as the congtructors of their Java superclasses. The Python-side _init_
executes after the superclassisinitialized, and with the same arguments (therefore, don't __init___ aJavasuperclass
inthe__init__ of aPython class meant to be compiled by jythonc). Afterward, Java code can accessthe
functiondity of instances of Python-coded classes by cdling instance methods defined in known interfaces or
superclasses and overridden by Python code.

Python code can never supply Java-visible static methods or attributes, only instance methods. By default, each
Python class supplies only the instance methodsiit inherits from the Javaclassit extends or the Javainterfacesit
implements. However, Python code can a so supply other Java-visible instance methods viathe @sig directive.

To expose amethod of your Python class to Javawhen jythonc compilesthe class, code the method's docstring as
mMan follawwed hyv 2 Iav7a mathod gaonati ire Eor evyamnl e

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 26. Distributing Extensions and Programs

Python's distutils alow you to package Python programs and extensionsin severd ways, and to ingall programs and
extensonsto work with your Python ingtallation. As| mentioned in Chapter 24, the distutils also afford the most
effective way to build C-coded extensions you write yourself, even when you are not interested in distributing such
extensions. This chapter coversthe distutils, aswel asthird-party tools that complement the distutils and let you
package Python programs for distribution as standal one gpplications, installable on machines with specific hardware
and operating systems without a separate ingta lation of Python.

[TeamLiB] e

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [cereviouslnex

This document is created with the unregistered version of CHM2PDF Pilot

26.1 Python's distutils

Thedistutils are arich and flexible set of toolsto package Python programs and extensionsfor distribution to third
parties. | cover typica, smple use of the distutils for the most common packaging needs. For in-depth, highly detailed
discussion of digtutils, | recommend two manuasthet are part of Python's online documentation: Digtributing Python
Modules (avalable at http:/Amww.python.org/doc/current/dist/), and Ingtaling Python Modules (available at
http://Amww.python.org/doc/current/ingt/), both by Greg Ward, the principa author of the distuitils.

26.1.1 The Distribution and Its Root

A distribution isthe set of filesto packageinto asinglefilefor distribution purposes. A di stribution may include
zero, one, or more Python packages and other Python modules (as covered in Chapter 7), aswell as, optiondly,
Python scripts, C-coded (and other) extensions, supporting datafiles, and auxiliary files containing metadata about
thedigtribution itsalf. A distribution issaid to be pure if al codeit includesis Python, and non-pure if it dso includes
non-Python code (most often, C-coded extensions).

Y ou should normally place dl thefiles of adistribution in adirectory, known asthe distribution root directory, and in
subdirectories of the distribution root. Mostly, you can arrange the subtree of files and directories rooted at the
distribution root to suit your own organizational needs. However, remember from Chapter 7 that a Python package
must reside in its own directory, and a package's directory must contain afilenamed _ _init__.py (or subdirectories
with___init__.py files, for subpackages) as well as other modules bel onging to that package.

26.1.2 The setup.py Script

The digtribution root directory must contain a Python script that by convention is named setup.py. The setup.py
script can, in theory, contain arbitrary Python code. However, in practice, setup.py dways boils down to some
variation of:

fromdistutils.core inport setup, Extension

setup(many keyword arguments go here)

All the action isin the parameters you supply in the call to setup. Y ou should not import Extension if your setup.py
dedlswith apure distribution. Extension is needed only for non-pure distributions, and you should import it only when
you need it. It isfine to have afew statements before the call to setup, in order to arrange setup's argumentsin clearer
and more readable ways than could be managed by having everything inline as part of the setup cdll.

The distutils.core.setup function accepts only keyword arguments, and there are alarge number of such arguments
that you could potentialy supply. A few ded with theinterna operations of the distutils themsdlves, and you never
supply such arguments unless you are extending or debugging the distutils, an advanced subject that | do not cover in
this book. Other keyword arguments to setup fal into two groups: metadata about the distribution, and information
about what filesarein the ditribution.

26.1.3 M etadata About the Distribution

Y ou should provide metadata about the distribution by supplying some of the following keyword arguments when
you cal the distutils.core.setup function. The vaue you associate with each argument name you supply isastring that
isintended mostly to be human-readable; therefore, any specifications about the string'sformat are just advisory. The
explanations and recommendations about the metadata fields in the following are & so non-normative, and correspond
only to common, not universa, conventions. Whenever the following explanations refer to "this ditribution,” it can be

Al snn A v~ F A A HlaA vtk Al 1Al idAA A Flaas Al v e Al vkl Flaeun £ A inAanl s Aadit s ~F FlaAa A~ e R A

http://www.python.org/doc/current/dist/default.htm
http://www.python.org/doc/current/inst/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious e |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

26.2 The py2exe Tool

The distutils help you package up your Python extensions and applications. However, an end user caningall the
resulting packaged form only after ingtaling Python. Thisis particularly a problem on Windows, where end users
want to run asingleingaller to get an gpplication working on their machine. Ingaling Python first and then running
your application'singtaller may prove too much of ahasdefor such end users.

Thomas Heller has developed a ssmple solution, a distutils add-on named py2exe, fredy available for download from
http://starship.python.net/crew/theller/py2exel . This URL aso contains detailed documentation of py2exe, and |
recommend that you study that documentation if you intend to use py2exe in advanced ways. However, the smplest
kinds of use, which | cover in the rest of this section, cover most practical needs.

After downloading and ingtdling py2exe (on a Windows machine where Microsoft Visud C++ 6 isdso ingdled),
you just need to add theline:
i nport py2exe

at the gart of your otherwise norma distutils script setup.py. Now, in addition to other distutils commands, you have
one more option. Running:
pyt hon setup. py py2exe

builds and collectsin asubdirectory of your distribution root directory an .exe file and one or more .dll files. If your
digtribution's name metadatais, for example, myapp, then the directory into which the .exe and .dll filesare collected
isnamed dist\myapp\. Any files specified by option data. filesin your setup.py script are placed in subdirectories of
dist\myapp\. The .exe file corresponds to your gpplication'sfirst or single entry in the scripts keyword argument
value, and aso contains the bytecode-compiled form of &l Python modules and packages that your setup.py
specifiesor implies. Among the .dll filesis, a minimum, the Python dynamic load library, for example python22.dll if
you use Python 2.2, plus any other .pyd or .dll filesthat your gpplication needs, excluding .dil filesthat py2exe
knows are system files (i.e., guaranteed to be available on any Windows ingtalation).

py2exe provides no direct means to collect the contents of the dist\myapp\ directory for easy distribution and
ingalation. Y ou have severd options, ranging from a .zip file (which may be given an .exe extension and made
sef-extracting, in waysthat vary depending on the .zip file handling tools you choose), al the way to aprofessona
Windowsingaller construction system, such as those sold by companies such as Wise and Ingtall Shield. One option
that is particularly worth considering is Inno Setup, afree, professiond-qudity instaler construction system (see
http:/Amww jrsoftware.org/isnfo.php). Since the files to be packaged up for end user ingtalation are an .exe file, one
or more .dll files, and perhaps some data filesin subdirectories, the issue becomes totally independent from Python.
Y ou may package up and redistribute such filesjust asif they had originaly been built from sources written in any
other programming language.

[TeamLiB]

http://starship.python.net/crew/theller/py2exe/default.htm
http://www.jrsoftware.org/isinfo.php

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

26.3 Thelnstaller Tool

Gordon McMillan has developed aricher and more genera solution to the same problem that py2exe
solves—preparing compact ways to package up Python applications for ingtalation on end user machinesthat may
not have Python ingaled. The Ingtdler toal, fredly downloadable from hitp:/mww.memillan-inc.convingdler, ismore
generd than py2exe, which supports only Windows platforms. Instaler natively supports Linux aswell as Windows.
Also, Ingtaller's portable, cross-platform architecture may alow you to extend it to support other Unix-like platforms
with areasonable amount of effort.

Ingtaller does not rely on distutils. To use Ingtdler, you must learn its own specification files syntax and semantics.
Installer can do much more than py2exe, soit's not surprising that there is more for you to learn before making full
use of it. However, | recommend studying and trying out Ingtdler if you have the specific need of building slandalone
Python applications for Linux or other Unix-like architectures, or if you havetried py2exe and found it did not quite
meet your needs.

[TeamLiB]

http://www.mcmillan-inc.com/installer

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from distribution channels.
Digtinctive covers complement our distinctive gpproach to technica topics, breathing persondity and lifeinto
potentidly dry subjects.

The animd on the cover of Python in aNutshell isan African rock python, one of approximately 18 species of
python. Pythons are nonvenomous constrictor snakesthat livein tropica regions of Africa, Asa, Audtralia, and some
Pecific Idands. Pythonslive mainly on the ground, but they are also excellent svimmers and climbers. Both male and
femae pythons retain vestiges of their ancestral hind legs. The mae python uses these vestiges, or spurs, when
courting afemae.

The python killsits prey by suffocation. While the snake's sharp teeth grip and hold the prey in place, the python's
long body coils around itsvictim's chest, condricting tighter each timeit breathes out. They feed primarily on
mammas and birds. Python attacks on humans are extremely rare.

Emily Quill wasthe production editor and copyeditor for Python in aNutshell. Linley Dolby and Tatiana Apandi Diaz
provided quality control. Philip Dangler, Judy Hoer, and Genevieve d'Entremont provided production assstance.
Nancy Crumpton wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover imageisa
19th-century engraving from the Dover Pictoria Archive. Emma Colby produced the cover layout with QuarkX Press
4.1 using Adobe's ITC Garamond font.

Bret Kerr designed the interior layout, based on a series design by David Futato. Thisbook was converted by Mike
Serrato FrameMaker 5.5.6 with aformat conversion tool created by Erik Ray, Jason Mclntosh, Nell Walls, and
Mike Serrathat uses Perl and XML technologies. Thetext font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
This colophon was written by Nicole Arigo.

The online edition of thisbook was created by the Safari production group (John Chodacki, Becki Maisch, and
Madeleine Newell) usng aset of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray,
Benn Sdter, John Chodacki, and Jeff Liggett.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

][SY MBOL] [A][B] [C][D] [El [FI[CG] [H] (1] [[K][L] [M]IN][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

I' (exclamation point)
comparisons

pdb command
Sruct format strings

" (double quote), gtring literds
(pound sign)
comments
regular expressons
dring formatting
$ (dollar sign)
MULTILINE atribute
regular expressons
% (percent sign)
HTML templates
remander
sring formatting
& (ampersand), bitwise AND
> (grester than Sgn)
>> (double greater than)

right shift

comparisons
sruct format srings

< (lessthansign)
<< (doublelessthan)
|eft shift

comparisons
Sruct format srings

<> (angle brackets)
event names
HTML comments
'(sngle quote)
gring literds
() (parentheses)
class satements
def satement
functioncdls
line continuation
plain assgnment statements
regular expressons
sring formatting
tuple crestion
* (asterisk)
** (double asterisk)
raising to a power
from Statement
multiplication
regular expressons
sequence repetition
dring formatting
*? (asterisk-question mark), regular expressions
+ (plussign)
addition
DaeTimeingances
DaeTimeDdtaingances

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

absfunction (built-in)
abs method (operator module)

abs special method
absdate attribute (DateTime class)
absdays attribute (DateTime class)
abspath function (os.path module)
abgtime attribute (DateTime class)
AbgtractFormatter class (formatter module)
AbgtractWriter class (formatter module)
absvaues method

DateTimecdlass

DateTimeDdtaclass
accept method (socket object)
Access database
access function (os module)
accumulate attribute (ufunc object)
acosfunction

cmath module

math module
acosh function

cmah module

math module
acquire method

Condition class

lock object

Semaphore object
Active Server Pages (ASP)
ActivePython
ActiveScripting extenson
ActiveState

Python Cookbook

Python I DEs offered by
actua method (Font object)
add method

Menu object
operator module

Stats object

add__ gpecid method 2nd
add cascade method (Menu object)
add checkbutton method (M enu object)
add _command method (Menu object)
add data method (Request object)
add_header method

Message object

Request object
add password method (HT TPPasswordM grWithDefaultRealm object)

add payload method (IMessage object)
add radiobutton method (Menu object)
add separator method (Menu object)
addstr method (Window object)

after method (Widget object)

after cancel method (Widget object)
after_idle method (Widget object)

aias command (pdb module)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

backdash (\)

directory paths

Windows

line continuation

regular expressons

dring literds
backtick (), string conversion
backward compdtibility

exception objects, strings as
base64 module

decodefunction

decodestring function

encodefunction

encodestring function
BaseHandler class
BaseHT TPRequestHandler class
BaseHTTPServer module 2nd

web server implementation
basename function (os.path module)
BaseRequestHandler class (SocketServer module)

client_address method

handle method

request method

server method
Badtion class (Bastion modul€)
Bastion module

Badtion class
bbox method (Canvas object)
benchmarking 2nd
Berkeley Databaselibrary [See BSD DB]
binaries

downloading

ingdling from

third-party ingdlersfor various platforms
Binary dass (xmirpdlib module)
binary data, encoding astext

base64 module

quopri module

uumodule
binary filemode
binary function (xmlrpdib module)
bind method

socket object

Widget object
bind_dl method (Widget object)
binding, references
bisect function (bisect module)
bisect module

bisect function

insort function
Bitmaplmage class
BlackAdder IDE
blank lines
blitz function (Numeric module)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

C compiler, 1ISO-compliant, ingtalling Python and
Clibrary
time moduleand
C programming language, CPython and
C++ programming language, extending Python with
cacsze function (struct module)
cdculator
caendar function (cdendar module)
cdendar module
caendar function
firsweekday function
idegp function
legpdays function
month function

monthcaendar function

monthrange function

prcal function

prmonth function

setfirsweekday function

timegm function

weekday function
calibrate method (Profile object)
__cdl__method

PyObject object

pecia method
cal stack

_getframefunction

retrieving limit on depth of

Setting limit on depth of

unwinding on exceptions
cdlablefunction (built-in)
calabletypes
callLater method (reactor object)
cancel method (scheduler object)
cancel CallL ater method (reactor object)
Canvas class (Tkinter module)

bbox method

coords method

cregte line method

create polygon method

credate rectangle method

cregte _text method

delete method

gettags method

itemoget method

itemconfig method

tag_bind method

tag unbind method
canvaswidget

lines

polygons

rectangles
text

capﬁ ize method (string object)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

dataattribute
UserDict module
UserList module
UserString module
data types

Boolean values

dictionaries
None
numbers

Python versons
sequences
ligs
grings
tuples
user-definable
data filesargument (distutils setup function)
Database APl [See DBAPI 2.0]
dataReceived method (Protocol object)
date attribute (DateTime class)
Datefunction
DBAPI-compliant modules
mx.DaeTimemodule
daetimevaues [See dso cdendar module; time operations]
compressed files
computing moveable feast days
converting
current CPU time, retrieving
directory paths
internationdization and
in 1SO 8601 formats
timetuple
date time attribute (zipfile module)
DateFromTicksfunction
DBAPI-compliant modules
mx.DaeTimemodule
DateTime dass (mx.DateTime module)
absdate attribute
absdays attribute
abgtime attribute
absvaues method
COM Date method
date attribute
day dtribute
day of week atribute
day of year atribute
ddt atribute
gmticks method
gmtime method
gmtoffset method
hour attribute
IS0_week attribute
locdtime method

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

EAFP (easier to ask forgiveness than permisson)
Queue module and
easer to ask forgivenessthan permisson [See EAFPF|
echo servers
TCP
UDP
edit function, textpad module
EditPythonPrefsicon (Macintosh)
eGenix GmbH
Element dass (minidom module) 2nd
getAttribute method
getAttributeNode method
getAttributeNodeNS method
getAttributeNS method
getElementsByTagName method
getElementsBy TagNameNS method
hasAttribute method
hasAttributeNS method
methods of
removeAttribute method
setAttribute method
dif dause
gseclause 2nd
emacs program
emal [See email package]
emall packege
Encoders module
functions
Generator module
Message module
Utilsmodule

emall protocols

poplib module

smitplib module
embedding/extending

CPython

Jython
Empty class (Queue module)
empty method

Queue object

scheduler object
emptyline function (cmd module)
enable command (pdb module)
enablefunction

cgitb module

gcmodule
encode function

base64 module
built-in
quopri module
Utilsmodule
uu module
encode method, string object
encode 7or8hit function (Encoders module)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

F2PY library
fabsfunction

cmah module
math module
factory functions
fail method (TestCase object)
faillf method (TestCase object)
falllfEqua method (TestCase object)
fallUnless method (TestCase object)
fallUnlessEqual method (TestCase object)
failUnlessRaises method (TestCase object)
FancyURL opener class
prompt user passwd method
verson method
Fast Fourier Transforms (FFTS)
FastCGl
fdopen function (os module)
Feast's module
February attribute (mx.DateTime module)
feed method
HTML Parser object
sgmllibmodule
XMLReader object
fetchall method (Cursor object)
fetchmany method (Cursor object)
fetchone method (Cursor object)
FFT module
FFTPACK /fftpack libraries
FFTs (Fast Fourier Transforms)
FedStorage class (cgi module)
disposition attribute
disposition options atribute
fileattribute
filename attribute

getfirst method

getlist method
getvaue method

headers attribute

name attribute

type atribute

type option attribute

vaue atribute
file attribute (Fiel dStorage object)
file descriptors

duplici

operationson

OS-eve
file extensions, order of, when searching filesystem for modules
fileobject (filetype) 2nd 3rd

attributes

close method

closed attribute

cregting
designating buffering

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

Gadfly
gadfly function (gadfly module)
gadfly module

gadfly function

gfdient function
garbage attribute (gc module)

garbage collection 2nd
clic garbage
dd satementsand
dissbling 2nd
findizing dases
gcmodule
Jython
reference counts
weakref module
gcmodule 2nd
collect function
dissblefunction 2nd
enable function
garbage attribute
get debug function
get objectsfunction
get referrersfunction
get threshold function
isenable function
st debug function
st threshold function
gdbm library
gdbm module

open function
~_ge specid method

Generator class (Generator module)
Generator module
generators
geometry method (Toplevel object)
get method

dictionary object

Entry object

Listbox object

Pythonlnterpreter object

Queue object

Scale object

Text object
get_al method (Message object)
get boundary method (M essage object)
get_charsets method (M essage object)
get data method (Request object)
get debug function (gc module)
get_filename method (Message object)
get full url method (Request object)
get_higory length function (readline module)
get host method (Request object)
get_maintype method (M essage object)
get_nowait method (Queue object)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

handle function, cgitb module
handle method
BaseRequestHandler object
HTTPServer object
handle accept method (dispatcher object)
handle_charref method
HTML Parser object
sgmilib module
handle close method (dispatcher object)
handle_comment method
HTML Parser object
sgmllib module
handle connect method, dispatcher object
handle_data method
HTML Parser object
sgmilib module
handle_endtag method
HTML Parser object
sgmllibmodule
handle_entityref method
HTML Parser object
sgmllibmodule
handle image method (HTM L Parser object)
handle read method (dispatcher object)
handle_gtarttag method
HTML Parser object
sgmllibmodule
handle write method (dispatcher object)
has data method (Request object)
has key function (bsddb module)
has key method (dictionary object)
hasattr function (built-in)
hasAttribute method (Element object)
hasAttributeNS method (Element object)
hasChildNodes method (Node object)
hash function (built-in) 2nd
hash__ specid method 2nd
hashopen function (bsddb module)
head method (NNTP object)
header lines
headers
headers attribute (FieldStorage object)
hex function (built-in)
hex__ specid method
hexadecimd literds
hexdigits atribute (sring module)
hierarchy of stardard exceptions
hour attribute
DaeTimedlass
DateTimeDdtaclass
hours attribute (DateTimeDeta class)
HPUX, Python IDEs
HTML (HyperText Markup Language)
debugging

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

I/O operations

auxiliary modulesfor
filanput
linecache
struct
xreadlines

error streams

falure of

optimizing

richer-text | nput/output
console /O
readline module

Stringl O/cStringl O modules

text I nput/output
getpass module
print statement

Standard input
standard output/standard error

iadd__ specid method
iand specia method
IBM AS/400, ingdling Python
IBM DB/2
iconify method (Toplevel object)
id function (built-in)
identchars attribute (cmd modul€)
identifiers 2nd
charactersnot allowed in
identity function (Numeric module)
IDEs (Integrated Devel opment Environments)
idiv__ specid method
IDLE (Interactive Devel_opment Environment)
ingin
if Satements
continue statementsin place of
ifloordiv___ specid method
ignore command (pdb module)
IGNORECA SE attribute (re modul€)
ilshift _ gpecid method
imag method (array object)
image create method (Text object)
images, supported by Tkinter module
imaginary method (array object)
IMAP4 (Internet Message Access Protocol Version 4)
immutable objects
imod __ specid method
implementations of Python
import__function (built-in) 2nd 3rd
import satement
ImportError exception
imul___ specid method
include dirsargument (distutils Extension dass)
| ndentationError exception
index method
list object

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

January attribute (mx.DaeTime module)
Ja files, Jython and

jarray module

array function
zerosfunction

Java
classes, subclassing
compiling Pythoninto
adding Java-visible methods
jythonc command
Python appletyserviets
embedding Jython

Py class

PyObject class
Pythoninterpreter class

Java Development Kit (JDK)
JavaNative Interface (INI)
Java packages, importing in Jython
bility
JavaBeans
Jython registry
subclassing Java classes
type conversons
JavaVirtud Machines [See VMs|
javautil collection classes
JavaBeans
JDK (Java Development Kit)
JINI (Java Native Interface)
join function (ospath module)
join method
gtring object
Thread object
July attribute (mx.DateTime module)
jumpahead method (Random object)
June attribute (mx.DateTime module)
JNVMs (JavaVirtud Machines)
Jython ingalation and
Jython
documentation
embedding in Java
Py class

PyObject class
Pythoninterpreter class

garbage collection

importing Java packages
bility
JavaBeans
Jython registry
subclassing Javaclasses
type conversons

inddling 2nd

Jython API
Py class
PyObject class

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

][SY MBOL] [A][B] [C][D] [El [FI[CG] [H] (1] [[K][L] [M]IN][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

kbhit function (msvert module)
key attribute (Morsel object)
keyboard events

K eyboardInterrupt exception
keyed access

KeyError exception
keysfunction (bsddb modul€e)
keys method (dictionary object)
keysym attribute (Event object)
keywords argument (distutils setup function)
keywords, ligt of

Komodo

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

Labe class (Tkinter module)
lambda expressions
LAPACK Iagpack litelibraries
last method

bsddb module

NNTP object
lastChild attribute (Node object)
lastcmd attribute (cmd module)
lastgroup attribute (match object)
lastindex attribute (match object)
|ayout manager
LBYL (look before you leap)
LC COLLATE attribute (locale module)
LC CTYPE attribute (locale module)
LC MESSAGES attribute (locade module)
LC MONETARY attribute (locae module)
LC NUMERIC atribute (locale module)
LC TIME attribute (locale module)
|dexp function

cmah module

math module

le specid method
|egpdays function (calendar module)
len function (built-in) 2nd 3rd

len__ specid method 2nd
lessthan sign (<)

comparisons

doublelessthan (<<)

|eft shift

sruct format string
Lesser GPL (LGPL)
|etters attribute (string modul€)
LGPL (Lesser GPL)
libraries argument (distutils Extenson class)
library dirs argument (distutils Extenson class)
license argument (distutils setup function)
line-completion functiondity
LinearAlgebramodule
linecache module

checkcachefunction

clearcachefunction

getlinefunction
lineno function (fileinput module)
linesep attribute (os module)
Linux

ingdling Python from binaries

Python IDEs

Red Hat Linux releases 6.x/7.x

Pythonv1.5.2 and

support for cryptographic-qudity pseudo-random numbers
list command (pdb module)
list comprehensons
list method

NNTP object

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

MA module
Macintosh
ingdling Python
internationdization
Mac OS 9/Mac OS X
Python IDE
Python interpreter on
MacPython, IDE included with

mail protocol

mailing lists

main program, module loading and
mainloop method (Widget object)
maintainer argument (distutils setup function)
maintainer_email argument (distutils setup function)
meake utility, ingaling Python and

make parser function (xml.sax package)
makedirs function (os module)

makefile method (socket object)

maketrans function (string module)
mandatory parameters

Mandrake Linux, ingtaling Python
MANIFEST files

map function (built-in)

meappings

indexing, error
mutable

specia methodsfor
March attribute (mx.DaeTime module)
mark gravity method (Text object)
mark _set method (Text object)
mark unset method (Text object)
markup
marshd module
dump/dumps functions
load/l oads functions
polymorphism and
marshding
match method (regular expression object) 2nd
match object
attributes
end method

expand method
group method
groupdict method
groups method

Span method
sart method

math module
acosfunction
acosh function
aanfunction
asnhfunction
aan/aan2 functions
aanh function

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

name argument (distutils setup function)
__name__ dtribute

class object

module object
name attribute

FieldStorage object
file object
__hame__ attribute
function object
name attribute
osmodule
named arguments
NameError exception
namdigt function (ZipFile dass)
hamespaces
Namespaces
namespaces
current loca
globa gatement
nested functions/scopes
namespaceURI attribute (Node object)
ne _speciad method
neg method (operator module)

neg specid method
nested functions

nested scopes
network encodings
network news

nntplib module
methods

response strings
Network News Transport Protocol [See NNTP)
network protocol modules
dient-gde
distributed computing
emall protocols
FTP protocol
HTTP protocol
https protocol
network news
telnet protocol
URL access
server-sde
Internet
new__specia method 2nd 3rd
new-style classes [See classes, new-style]
newgroups method (NNTP object)
newline (\n), string literds
newnews method (NN TP object)
newsgroups
next command (pdb module)
next method
bsddb module

NNTP object

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

O_APPEND attribute (os module)
O BINARY attribute (os modul€e)
O CREAT attribute (os module)
O_DSY NC attribute (os module)
O_EXCL attribute (os module)
O NDELAY attribute (os module)
O NOCTTY attribute (os module)
O NONBLOCK attribute (os module)
O RDONLY attribute (os module)
O RDWR attribute (os module)
O_RSYNC attribute (os module)
O_SYNC attribute (os module)
O TRUNC attribute (0s module)
O WRONLY attribute (os module)
object models
dassc
inheritancein
new-syle
inheritancein
object type (built-in) 2nd
repr __method
object-oriented Python
objects
assgning [See assgnment statements)
firg-class, classesas
mutableimmutable
shelve module and
sidizing/desgridizing
oct function (built-in)
oct specia method
octd literds
octa grings, converting integersto
octdigits atribute (string module)
October attribute (mx.DateTime module)
ODBC (Open DataBase Connectivity)
odbc module
ok builtinmodules attributes (RExec object)
ok _path attributes (RExec object)
ok posix_names attributes (RExec object)
ok sys names attributes (RExec object)
onecmd function (cmd module)
oneDay attribute (mx.DateTime module)
oneHour attribute (mx.DateTime modul€)
oneMinute attribute (mx.DateTime module)
onesfunction (Numeric module)
oneSecond atribute (mx.DateTime module)
oneWeek tribute (mx.DateTime module)
Open DataBase Connectivity (ODBC)
open function [See aso open function (built-in)][See aso open function (built-in)]
anydbm module
codecs module
dbhash module
dbm module
dumbdbm module

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

p command (pdb module)
P NOWAIT attribute (os module)
P _WAIT atribute (os module)
pack function (struct module)
pack method (Widget object)
pack forget method (Widget object)
pack info method (Widget object)
packages
packages argument (distutils setup function)
parameters
paramgtyle attribute (DBAPI-compliant modules)
pardir attribute (os modul€e)
parent widgets 2nd
parentheses ()

Class satements

def gatement

functioncdls

line continuation

plain assgnment statements

regular expressons

gring formatting

tuple cregtion
parentNode method (Node object)
parsefunction

minidom module

pulldom module
parse and hind function (readline modul€e)
parseaddr function (Utils module)
parsedate function (Utils module)
parsedate tz function (Utils module)
parser function (xml.sax package)
Parser module

message from filefunction

message from_gring function
parseString function

minidom module

pulldom module

xml.sax package

pass statement
pass method (POP3 object)

path attribute (sysmodule) 2nd
path method (HT TPServer object)
path module
PATH varidble
lack of
python interpreter and
path-string attributes (os module)
pathsep attribute (0s module)
pattern attribute (regular expression object)
PBF (Python Business Forum)

pdb module
diascommand

args command
break command

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

][SY MBOL] [A][B] [C][D] [El [FI[CG] [H] (1] [[K][L] [M]IN][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

QNX, ingaling Python

QP encoding (Quoted Printable encoding)
gsize method (Queue object)

question mark (?), regular expressons
Queue class (Queue module)

empty method
full method

get method
get_nowait method

put method
put_nowait method

gsize method

in threaded program architecture
Queue module

Empty class

Full dass

Queue class
--qui€t option, package ingtallation
quit command (pdb module)
quit method

FTP object
NNTP object
POP3 object
SMTP object
Widget object

Quixote

quopri module
decode function

decodestring function

encode function

encodediring function
quote function

urllib module

Utilsmodule
quote plusfunction (urllib module)
quotesttr function (saxutils modul€e)
Quoted Printable encoding (QP encoding)

quoted gtrings
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

add _module method (RExec object)
eva method (RExec object)
exec method (RExec object)
execfile method (RExec object)
import method (RExec object)
open method (RExec object)
reload method (RExec object)
unload method (RExec object)
radd specid method
Radiobutton class (Tkinter module)

desdlect method

flash method

invoke method

select method
ralse statement

rand specia method
Random class

choice method

getstate method

jumpahead method

random method

randrange method

seed method

Ssetdtate method

shuffle method

uniform method
random method (Random object)
random module 2nd
RandomArray module
randrange method (Random object)
range function (built-in) 2nd
rank function (Numeric module)
ravel function (Numeric module)
raw strings
raw_input function (built-in) 2nd
RDBMS (relationa database management system)
RDF (Resource Description Framework)

rdiv__ specia method

rdivmod specid method
re attribute (match object)
remodule 2nd

compilefunction 2nd

flagsargument

DOTALL attribute

escape function

IGNORECA SE dtribute

LOCALE dttribute

MULTILINE atribute

UNICODE attribute

VERBOSE dttribute
reactor object
cdlLater method
cancel CdlLater method
lisenTCP method

—_ =~ =~ === |=

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

s evd method (RExec object)
s exec method (RExec object)
s execfile method (RExec object)
S IFMT function (stat module)
S IMODE function (stat modul€e)
s import method (RExec object)
S ISBLK function (stat modul€)
S ISCHR function (stat module)
S ISDIR function (stat module)
S ISFFO function (stat module)
S ISLNK function (stat module)
S ISREG function (stat module)
S ISSOCK function (stat module)
s reload method (RExec object)
s unload method (RExec object)
sandbox environment, restricted execution
SAPDB
sapdbapi module
Saturday attribute (mx.DateTime module)
save bgn method (HTML Parser object)
save end method (HTML Parser object)
savespace method (array object)
SAX (Smple AP for XML)
parsng XHTML
parsng XML 2nd [See aso xml.sax package]
SAXException class (xml.sax package)
saxutilsmodule
escape function
quotesttr function
XML Generator class
Scde class (Tkinter module)
get method
st method
sched module
event scheduler function
scheduler class
cance method
empty method
enter method
enterabs method
run method
scheduler function (sched module)
SCTE program
scripts 2nd [See a'so server-side scripting] [See al so server-side scripting]
Cal
debugging
performance characteristics
Python, inddling
GUI, running sanddone
Setup.py
scripts argument (distutils setup function)
Scrollbar class (Tkinter module)

SCXX library
search method

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

tabs, converting to spaces
tag add method (Text object)
tag_bind method

Canvas object

Text object
tag_cget method (Text object)

tag_config method (Text object)
tag delete method (Text object)
tag_lower method (Text object)
tag_names method (Text object)
tag_raise method (Text object)
tag_ranges method (Text object)
tag_remove method (Text object)
tag_unbind method

Canvas object

Text object
tags

HTML

HTML v2.0
take function (Numeric module)
tan function

cmath module

math module
tar program
targets of assgnments 2nd
tbreak command (pdb module)
TCP echo servers
TCPServer class
tearDown method (TestCase object)
tell method

file object

mmap object
Telnet dass

close method

expect method
interact method

open method

read al method

read _eager method

read some method

read until method

write method
telnet protocol 2nd

twisted.protcols package
Telnet sarvers
telnetlib module 2nd 3rd
Template class (Cheetah. Template module)
Template modul e (Cheetah package)
tempnam function (os module)
termination functions
test-first coding
TestCase class

assert_method

assertEqua method

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

UDP echo servers
UDPServer class
ufunc object

accumulate tribute

attributes

outer atribute

reduce dtribute

reduceat attribute
ufuncs (universal functions), Numeric module
unalias command (pdb module)
unbind method (Widget object)
unbind_al method (Widget object)
unbinding [See references, unbinding]
unbound methods 2nd [See aso methods|[See also methods]
UnboundL ocal Error exception
undef macros argument (distutils Extension class)
underscore ()

class-private variables

gettext module

identifiers 2nd

interactive sessons

module-private varigbles

gpecia methods
ungetch function (msvert module)
unichr function (built-in)
Unicode

aphanumeric designation

converting sringsto
UNICODE attribute (re module)
Unicode Character Database

unicode _ gpecial method
Unicodesdtrings 2nd

codecs module

encoding/decoding

asimmutable sequences

Tkinter and
unicodetype (built-in) 2nd 3rd 4th
unicodedata module
UnicodeError exception
uniform method (Random object)
Uniform Resource Locators [See URLS]
unit testing

large amounts of data
unittest module

TestCaseclass
universal newlines
Unix

binary/text file modes

dbm module

ingdling Python from source

mmap function

permisson bits
copying

Python IDEs

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

][SY MBOL] [A][B] [C][D] [El [FI[CG] [H] (1] [[K][L] [M]IN][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

vauedtribute
FieldStorage object
Morsel object
VaueError exception 2nd 3rd 4th
vaues method (dictionary object)
vaiadles
assgnment datements
binding
built-in
class-private
global, thread synchronization and
module-private
rebinding
referencing, error
sorted ligt of
unbinding
varsfunction (built-in)
VERBOSE attribute (re modul€)
verson argument (distutils setup function)
verson attribute (sys module)
verson method
FancyURL opener object
HTTPResponse object
versonsof Python
Forum releases
Python-in-a-tie releases
v2.2
SmpleXMLRPCServer module, defect in
time module, functions
time module, srptimefunction
type objects
v2.3
datetime module
lagging
sockets with timeout behavior
vertical bar (])
bitwise OR
regular expressons 2nd
vim program
Visud C++
building Python source
for debugging
interoperability of Python release and debugging builds
runtime library, accessing extras supplied by
Visua Python
Visuad Studio .NET IDE
VxWorks, ingdling Python

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

W3C (World Wide Web Consortium)
wait method
Condition class
Event object
wait variable method (Widget object)
wait_vighility method (Widget object)
wait window method (Widget object)
walk function (os.path module)
walk method (M essage object)
warn function (warnings module)
warningsmodule
filterwarningsfunction
formatwarning function
resstwarnings function
showwarning function
warn function
WConio module
weak references
WeakKeyDictionary class (weakref module)
weekref module 2nd
getweakrefcount function
getweskrefsfunction
proxy function
ref function
WeakKeyDictionary class
WeakVadueDictionary class
WeakVaueDictionary class (weakref module)
weave package
web servers, subclassing BaseHTTPServer
Webware 2nd
Cheetah and
Wednesday attribute (mx.DateTime module)
Weekday tribute (mx.DateTime module)
weekday function (caendar module)
wfile method (HT TPServer object)
where command (pdb module)
where function (Numeric module)
whichdb function (whichdb modul€e)
whichdb module
whichdb function
while gatements
dsedause
whitespace
lineindentsin Python programs
regular expressons
Separating tokens
grings of
whitespace attribute (string module)
widget attribute (Event object)
Widget class (Tkinter module)
after method
after_cancel method
after_idle method
bind method

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

][SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [I] [[KT[L] [M] [N][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

X_root attribute (Event object)
XHTML
changing/outputting with minidom
parsing
with minidom module
with pulldom module
with xml.sax
Xitami sarvers
ingaling Python CGI scriptson
LRWPfor
XLink
XML (eXtensble Markup Language)
generating
parsing
with DOM
with SAX
Python support for
xml packege
XML-RPC 2nd
xmirpdib module
XML-RPC servers 2nd

xml.dom package
DOMException class

xml.sax package
dtributes
ContentHandler class
incrementd parsing
make parser function
parser function
parseString function
SAXException class
saxutilsmodule
XML Generator class (saxutils module)
XML Reader object
close method
feed method
reset method
xmirpdib module
Binary class
binary function
Boolean class
boolean function
DateTimecdlass
ServerProxy class
xmlrpclib protocol
xor__ specia method
xor method (operator module)
XPaih
XPointer
xrange function (built-in) 2nd
xreadlines function (xreadlines module)
xreadlines method (file object)
xreadlines module
xreadlines function

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

][SY MBOL] [A][B] [C][D] [El [FI[CG] [H] (1] [[K][L] [M]IN][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

y_root attribute (Event object)
year attribute (DateTime class)

yield keyword
yview method (Text object)

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

][SY MBOL] [A][B] [C][D] [El [FI[CG] [H] (1] [[K][L] [M]IN][O] [P] [QI[R] [S] [T] [U] [V] [W] [X] [Y][Z

ZeroDivisonError exception
zerosfunction

jarray module

Numeric module
ZIPfiles
zip function (built-in)
zZip program
ZipFile dass (zipfile module)

close method

getinfo function

infolist function

namdig function

printdir function
read function

testzip function

writefunction

writestr function
zipfilemodule

is zipfilefunction

ZipFilecdlass

Ziplnfodass
Ziplnfo dlass (zipfilemodule)

atributes
Zlibmodule

compressfunction

decompressfunction

Zope
[TeamLiB]

	Main Page
	Table of content
	Copyright
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Part I: Getting Started with Python
	Chapter 1. Introduction to Python
	1.1 The Python Language
	1.2 The Python Standard Library and Extension Modules
	1.3 Python Implementations
	1.4 Python Development and Versions
	1.5 Python Resources

	Chapter 2. Installation
	2.1 Installing Python from Source Code
	2.2 Installing Python from Binaries
	2.3 Installing Jython

	Chapter 3. The Python Interpreter
	3.1 The python Program
	3.2 Python Development Environments
	3.3 Running Python Programs
	3.4 The Jython Interpreter

	Part II: Core Python Language and Built-ins
	Chapter 4. The Python Language
	4.1 Lexical Structure
	4.2 Data Types
	4.3 Variables and Other References
	4.4 Expressions and Operators
	4.5 Numeric Operations
	4.6 Sequence Operations
	4.7 Dictionary Operations
	4.8 The print Statement
	4.9 Control Flow Statements
	4.10 Functions

	Chapter 5. Object-Oriented Python
	5.1 Classic Classes and Instances
	5.2 New-Style Classes and Instances
	5.3 Special Methods
	5.4 Metaclasses

	Chapter 6. Exceptions
	6.1 The try Statement
	6.2 Exception Propagation
	6.3 The raise Statement
	6.4 Exception Objects
	6.5 Custom Exception Classes
	6.6 Error-Checking Strategies

	Chapter 7. Modules
	7.1 Module Objects
	7.2 Module Loading
	7.3 Packages
	7.4 The Distribution Utilities (distutils)

	Chapter 8. Core Built-ins
	8.1 Built-in Types
	8.2 Built-in Functions
	8.3 The sys Module
	8.4 The getopt Module
	8.5 The copy Module
	8.6 The bisect Module
	8.7 The UserList, UserDict, and UserString Modules

	Chapter 9. Strings and Regular Expressions
	9.1 Methods of String Objects
	9.2 The string Module
	9.3 String Formatting
	9.4 The pprint Module
	9.5 The repr Module
	9.6 Unicode
	9.7 Regular Expressions and the re Module

	Part III: Python Library and Extension Modules
	Chapter 10. File and Text Operations
	10.1 The os Module
	10.2 Filesystem Operations
	10.3 File Objects
	10.4 Auxiliary Modules for File I/O
	10.5 The StringIO and cStringIO Modules
	10.6 Compressed Files
	10.7 Text Input and Output
	10.8 Richer-Text I/O
	10.9 Interactive Command Sessions
	10.10 Internationalization

	Chapter 11. Persistence and Databases
	11.1 Serialization
	11.2 DBM Modules
	11.3 The Berkeley DB Module
	11.4 The Python Database API (DBAPI) 2.0

	Chapter 12. Time Operations
	12.1 The time Module
	12.2 The sched Module
	12.3 The calendar Module
	12.4 The mx.DateTime Module

	Chapter 13. Controlling Execution
	13.1 Dynamic Execution and the exec Statement
	13.2 Restricted Execution
	13.3 Internal Types
	13.4 Garbage Collection
	13.5 Termination Functions
	13.6 Site and User Customization

	Chapter 14. Threads and Processes
	14.1 Threads in Python
	14.2 The thread Module
	14.3 The Queue Module
	14.4 The threading Module
	14.5 Threaded Program Architecture
	14.6 Process Environment
	14.7 Running Other Programs
	14.8 The mmap Module

	Chapter 15. Numeric Processing
	15.1 The math and cmath Modules
	15.2 The operator Module
	15.3 The random Module
	15.4 The array Module
	15.5 The Numeric Package
	15.6 Array Objects
	15.7 Universal Functions (ufuncs)
	15.8 Optional Numeric Modules

	Chapter 16. Tkinter GUIs
	16.1 Tkinter Fundamentals
	16.2 Widget Fundamentals
	16.3 Commonly Used Simple Widgets
	16.4 Container Widgets
	16.5 Menus
	16.6 The Text Widget
	16.7 The Canvas Widget
	16.8 Geometry Management
	16.9 Tkinter Events

	Chapter 17. Testing, Debugging, and Optimizing
	17.1 Testing
	17.2 Debugging
	17.3 The warnings Module
	17.4 Optimization

	Part IV: Network and Web Programming
	Chapter 18. Client-Side Network Protocol Modules
	18.1 URL Access
	18.2 Email Protocols
	18.3 The HTTP and FTP Protocols
	18.4 Network News
	18.5 Telnet
	18.6 Distributed Computing

	Chapter 19. Sockets and Server-Side Network Protocol Modules
	19.1 The socket Module
	19.2 The SocketServer Module
	19.3 Event-Driven Socket Programs

	Chapter 20. CGI Scripting and Alternatives
	20.1 CGI in Python
	20.2 Cookies
	20.3 Other Server-Side Approaches

	Chapter 21. MIME and Network Encodings
	21.1 Encoding Binary Data as Text
	21.2 MIME and Email Format Handling

	Chapter 22. Structured Text: HTML
	22.1 The sgmllib Module
	22.2 The htmllib Module
	22.3 The HTMLParser Module
	22.4 Generating HTML

	Chapter 23. Structured Text: XML
	23.1 An Overview of XML Parsing
	23.2 Parsing XML with SAX
	23.3 Parsing XML with DOM
	23.4 Changing and Generating XML

	Part V: Extending and Embedding
	Chapter 24. Extending and Embedding Classic Python
	24.1 Extending Python with Python's C API
	24.2 Extending Python Without Python's C API
	24.3 Embedding Python

	Chapter 25. Extending and Embedding Jython
	25.1 Importing Java Packages in Jython
	25.2 Embedding Jython in Java
	25.3 Compiling Python into Java

	Chapter 26. Distributing Extensions and Programs
	26.1 Python's distutils
	26.2 The py2exe Tool
	26.3 The Installer Tool

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X
	Index Y
	Index Z

